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Mobile Near-Infrared Sensing - A Systematic Review on
Devices, Data, Modeling and Applications

WEIWEI JIANG, Nanjing University of Information Science and Technology, China
JORGE GONCALVES and VASSILIS KOSTAKOS, University of Melbourne, Australia

Mobile near-infrared sensing is becoming an increasingly important method in many research and industrial
areas. To help consolidate progress in this area, we use the PRISMA guidelines to conduct a systematic review
of mobile near-infrared sensing, including 1) existing prototypes and commercial products; 2) data collection
techniques; 3) machine learning methods; 4) relevant application areas. Our work measures historical and
current trends, and identifies current challenges and future directions for this emerging topic.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Computing
methodologies→Machine learning; • Applied computing→ Physical sciences and engineering.
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1 INTRODUCTION
There are an increasing number of technologies that involve near-infrared (NIR) light. Compared to
other electromagnetic (EM) radiations such as ultraviolet (UV) and visible (VIS) lights, NIR light is
invisible to the human eye and safe to the human body, and can be either penetrative or sensitive to
different materials at different wavelengths [143]. This makes NIR light ideal for many applications
that involve material or physiological sensing. In favor of its safety and versatility, researchers
have devoted to developing NIR technologies that are more sensitive, requiring less power, with
smaller size and lower cost, and ultimately mobile.
With the emergence of mobile devices, there is a paradigm shift for NIR technologies. Conven-

tionally, many NIR technologies are limited to laboratory use. It is mostly mandatory to conduct
professional training for using the equipment with thorough operational and maintenance protocols.
Such constraints are being eased with the development of more accessible user interfaces (UIs),
automated data processing, and simplified instructions [138], in particular for mobile NIR devices.
As a result, this paradigm shift brings more opportunities, such as out-of-laboratory applications,
as well challenges, such as in situ data collection and processing [138].
In this survey, we focus on mobile NIR technologies and their applications, particularly in

computer science and related areas. We frame our survey with the following research questions
(RQs). We also show an overview of this survey in Fig. 1.
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Fig. 1. Overview of mobile near-infrared sensing and article organization.

RQ1: What and how mobile NIR devices are being used or developed? (Section 4 and 5)
RQ2: What kind of data can be collected using mobile NIR devices? (Section 6.1)
RQ3: How to use the data collected by mobile NIR technologies? (Section 6.2 and 6.3)
RQ4: What is the overall trend in mobile NIR technologies – including both the technology and

applications? (Section 7)
RQ5: What are the main challenges and opportunities for mobile NIR technologies? (Section 8)

2 BACKGROUND
2.1 Mobile near-infrared methods
Near-infrared (NIR) is a category of invisible light with a wavelength between 700 nm and 2500 nm
(Astronomy division [61]). NIR light can typically penetrate objects further than other lights such as
ultraviolet (UV), visible (VIS) and evenmid-infrared (MIR), while being safe to the human body [143].
Furthermore, many NIR devices are low-cost, small-sized with low power consumption, making
them superior for mobile applications compared to alternative methods. To this end, near-infrared
has been widely used for many mobile scenarios in research, industry, and daily life.
There are various NIR sensing methods available to achieve different tasks. In general, an NIR

method aims to retrieve data after the NIR light interacts with the sensing object, such as diffuse
reflection on the object’s surface, transmission or penetration through the object, or both. A more
complex technique can involve multiple wavelengths of NIR lights, continuous sensing in a period
of time, or sensing multiple locations. To date, the most common methods include near-infrared
spectroscopy (NIRS), functional near-infrared spectroscopy (fNIRS), and NIR imaging, as illustrated
in Fig. 2 and summarized as follows.
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Fig. 2. Illustrations of NIR sensing methods, including: a) NIRS, b) fNIRS, c) NIR imaging, and d) other
methods in general. The NIR hand vein image is sampled from an open-sourced dataset [159].

Near-infrared spectroscopy (NIRS) – NIRS utilizes multiple wavelengths of NIR lights to retrieve
the material information of an object, especially its chemical components [22]. As particular
wavelengths may have different responses to different materials (e.g., reflectance or absorbance),
the resulting NIRS spectra are different for distinct materials (illustrated in Fig. 2a). Furthermore,
NIRS does not require complex sample preparation and only takes several seconds to scan a sample.
Hence, NIRS is superior for mobile material sensing tasks, such as identifying food compositions,
water quality analysis, and crop disease detection (Section 4.1 and 5.1).
Functional near-infrared spectroscopy (fNIRS) – While NIRS only focuses on spectral sensing,
the fNIRS method can be considered as an expansion and a dedicated use case of NIRS – it focuses
on sensing hemodynamics of the human brain, particularly oxygen in the blood, represented by
concentration changes of oxygenated hemoglobin (𝐻𝑏𝑂2) and deoxygenated hemoglobin (𝐻𝑏𝑅).
For that, typical fNIRS utilizes NIR at two wavelengths – ∼760 nm for sensing 𝐻𝑏𝑅 and ∼850 nm
for sensing 𝐻𝑏𝑂2 respectively [188]. Since both wavelengths are relatively translucent to human
tissue, but can be absorbed by 𝐻𝑏𝑅 (at ∼760 nm) or 𝐻𝑏𝑂2 (at ∼850 nm). Such features make fNIRS
superior for sensing the hemodynamics of the human brain. Furthermore, many fNIRS devices
also monitor the human brain at different locations (i.e., channels) at the same time, resulting in
dynamic imaging of the brain activity for analyzing different brain areas. We illustrate the fNIRS
signals in Fig. 2b for one channel. Finally, compared to other brain imaging methods, fNIRS is
relatively low-cost and can be mobile (compared with functional magnetic resonance imaging or
fMRI), with better usability and lower noise (compared with electroencephalography or EEG) [90].
Also, fNIRS is still under active engineering that may be improved in the near future (Section 5.2).
Near-infrared imaging – Besides NIRS and fNIRS, near-infrared imaging is also a typical sensing
method that utilizes near-infrared. Fundamentally, NIR imaging expands the human eye’s perception
beyond visible (VIS) light, yielding extra information that cannot be seen. Also, as near-infrared
can penetrate many objects in a moderate depth (up to several centimeters [85]), the imaging
outcome can include information inside the object, such as biometric features (e.g., iris, hand
veins as illustrated in Fig. 2c). Furthermore, near-infrared fluorescence imaging is also commonly
adopted for highlighting specific objects, using targeted NIR fluorescent agent that attaches to
pre-designated tissues (e.g., human cancer cells) [96]. Recent studies also include mobile scenarios
in healthcare, authentication, and human–computer interaction (HCI) (Section 5.3).
Other near-infrared methods – Finally, there are also other near-infrared sensing methods for
mobile scenarios. For example, photoplethysmography (PPG) is mostly used for the pulse oximeter
to measure blood volume changes [111], while photoglottography (PGG) is used for sensing glottis
in the larynx [32]. For particular applications, there can be a distinctive sensing technique applied
using near-infrared (Section 5.4).
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Table 1. A comparison of recent surveys focusing on NIR sensing methods and their scope.

Survey
Near-infrared methods Mobile

scenario?
Scope

NIRS fNIRS Imaging Other Device Application Dataset Modeling

[74] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓

[70] ✗ ✓ ✗ ✗ ✗ ✓ ✓

depression
✓ ✗

[27] ✗ ✓ ✗ ✗ ✗ ✓ ✓

neuro-
science

✗ ✗

[160] ✗ ✓

fNIRS-EEG
✗ ✗ ✓

wearable
✓ ✗ ✗ ✗

[73] ✗ ✗ ✓

fluorescence
✗ ✗ ✓ ✓

biomedical
✗ ✗

[45] ✗ ✗ ✓

photoacoustic
✗ ✗ ✓ ✓ ✗ ✗

[35] ✓

VIS & NIR
✗ ✗ ✗ ✗ ✓ ✓

agriculture
✗ ✓

[25] ✓ ✗ ✓

hyperspectral
✗ ✗ ✓ ✓

food
✗ ✓

[14] ✓ ✗ ✗ ✗ ✓

miniaturized
✓ ✓ ✗ ✗

[15] ✓ ✗ ✗ ✗ ✓

miniaturized
✓ ✓

agriculture
and food

✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.2 Related surveys
There are a number of surveys focusing on NIR sensing methods with various aspects. However,
existing surveys have different scopes that either limit specific sensing methods or a particular
application area. For example, Hong and Yaqub reviewed recent studies on fNIRS while focusing
on the healthcare industry [74]. Also, Ho et al. and Chen et al. present reviews of using fNIRS for
diagnosing major depression disorder [70] and neuroscience [27] respectively. Furthermore, Uchitel
et al. reviewed recent studies on wearable fNIRS-EEG methods, focusing on the devices such as new
prototypes [160]. Besides, fNIRS, Hong et al. and Du et al. show reviews of NIR imaging, focusing
on fluorescence [73] and photoacoustic [45] respectively. Finally, existing surveys also include the
NIRS method. For instance, Cortés et al. and Chandrasekaran et al. reviewed studies using NIRS for
quality control in agriculture [35] and fruits [25] respectively. In addition, Beć et al. highlight in
their review the emerging miniaturized NIRS method that is mobile and useful for agriculture and
food [14] and other fields [15].
In this survey, we focus on mobile near-infrared (NIR) sensing methods including NIRS, fNIRS,

NIR imaging, and other sensing methods. We also show analysis results regarding 1) mobile devices
including both commercial products and prototypes, 2) applications in different areas, 3) datasets
that were generated in recent studies, and 4) modeling methods, in particular machine learning,
to achieve different tasks using mobile NIR sensing methods. We show the differences between
related surveys and our survey in Table 1.

In addition, based on the survey results, we discuss challenges and future directions in the mobile
near-infrared study field, including open datasets, machine learning methods for mobile devices,
and human factors that may affect the performance of mobile near-infrared methods. Furthermore,
while security is not a main research topic in this area, we note the lack of consideration for data
security, which can be crucial for in-the-wild use cases in the foreseeable future.
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Fig. 3. Study selection using the four-phrase PRISMA guidelines.

3 METHODOLOGY
This review follows the Preferred Reporting Items for Systematic reviews and Meta-Analysis
(PRISMA) four-phase guideline [134]. First, we identified study records using a search strategy to
query publication databases (Section 3.1). Second, we screened the search results by title and abstract
to exclude out-of-scope records. Third, full-text articles were assessed based on the eligibility criteria
(Section 3.2). Finally, eligible studies were included in this review for analysis.

3.1 Search strategy
The initial search was performed based on the topic of this review to include the most relevant
studies. Considering the two main parts of the topic – mobile and near-infrared – the query
statement was defined below

(mobile OR portable OR wearable OR handheld OR miniatur*)
AND ((near AND infrared*) OR NIR*)

where the asterisk symbol ∗ represents as arbitrary non-space characters. The query was performed
for the titles and the abstracts respectively. Four primary databases were included – ACM Digital
Library, IEEE Xplore, Springer Link, and Elsevier Scopus (which contains Science Direct). Also, to
include the most relevant studies, both Springer and Elseviers’ databases were limited to conference
papers or journal articles in computer science. Finally, the publication dates were limited to between
2012 and 2022 to include recent studies.
We note that since Springer Link did not provide the option to limit the search to titles or

abstracts1, we had to follow a slightly different process to identify the papers. First, we did a
full-text search in Springer Link and downloaded the results. Next, we filtered the results using a
Structured Query Language (SQL) statement. The SQL statement is defined as identical to what we
used for other databases (i.e., ACM, IEEE, and Elsevier).

3.2 Study selection
In total, 1242 query results were returned from the databases (46 from ACM, 444 from IEEE, 45
from Springer2, and 707 from Elsevier). After removing duplicates by title, 948 studies were initially
included for screening and eligibility assessment. The studies were selected with the criteria below:
Criterion 1 – publication category: The study must be published as a peer-reviewed technical

paper. Publications such as progress reports, opinion papers or theses are excluded.

1This limitation may only exist at the time point of submission.
2Initially, 3150 results returned from the full-text search, 45 results remained after post-filtering by title and abstract.
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Fig. 4. Numbers of papers published by year between 2012 and 2022.

Criterion 2 – involve near-infrared: The study must involve near-infrared. Studies using only
other technologies such as ultra-violet, visible light, or thermal imaging that uses mid-far infrared
light are excluded.
Criterion 3 – mobile device: The study must involve a mobile device. Studies that depend on a

setup that cannot be readily moved, such as devices that are implantable, must run with a local
personal computer (e.g., controlling a device over USB), or must be connected to grid power, are
excluded.
The whole study process is illustrated in Fig. 3. Overall, 471 studies were excluded by title and

abstract screening, and 336 studies were excluded by full-text eligibility assessment. In total, 141
studies were included in this review for the analysis.

4 COMMERCIALLY AVAILABLE MOBILE NEAR-INFRARED DEVICES
In this survey, we first analyze mobile near-infrared devices that are used in the literature. Un-
like fields that focus on theoretical or algorithmic studies, the device is one of the fundamental
requirements to conduct studies that involve mobile near-infrared. In many cases, using a different
mobile near-infrared device impacts the results of targeted studies. As an example of another mobile
sensing field, the Wi-Fi channel state information (CSI) sensing method leverages standardized
Wi-Fi devices [114]. Since all devices comply with the same protocol (i.e., IEEE 802.11), most Wi-Fi
sensing studies can be generalized to common Wi-Fi devices.
In contrast, mobile near-infrared devices are still under active engineering, we are yet to have

a standardized protocol like Wi-Fi does. Although particular areas such as medical devices (e.g.,
oximeter and fNIRS) have specific standards, they are not necessarily comprehensive nor compulsory
worldwide. One main reason is that, unlike Wi-Fi which serves a universal purpose (i.e., wireless
connectivity), mobile near-infrared devices must adapt to diverse use cases or scenarios, making
their standardization much more complex. For example, while most fNIRS devices are used for
brain imaging, these devices have to be adapted to various biological individual differences (e.g.,
human subjects at different ages) and distinct applications (e.g., real-time human-brain interfaces
that leverage specific brain activities, or cognitive studies that require high-resolution imaging).
Nevertheless, there are still some mobile near-infrared devices that are commercially available

for a broad range of use cases, as detailed in this section. The most common products include
NIRS scanners for spectral analysis and fNIRS systems for monitoring hemodynamic activities or
neural imaging. Other mobile near-infrared sensing products are still quite limited. In particular, the
availability of suitable, off-the-shelf mobile near-infrared imaging devices is quite limited, especially
when considering the feasibility of a wide range of applications. Hence, the limited availability
and relatively high cost motivate researchers to develop custom near-infrared imaging systems
tailored to specific application scenarios. These systems often provide improved adaptability and
performance for particular use cases.
Similarly, researchers also strive to develop other mobile sensing methods, including NIRS

and fNIRS, beyond using commercial products. However, developing a mobile sensing device
requires specialized skills with more considerations, as detailed in Section 5, where we explore the
motivations and challenges behind the development of these custom near-infrared prototypes.
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4.1 Commercial mobile NIRS products
In this section, we provide a comprehensive comparison and analysis of the commercially available
mobile NIRS products that have been used by recent studies, as shown in Table 2. In particular,
for mobile scenarios, we outline the following main features for consideration and then provide
examples for different use cases. We then summarize the advantages and disadvantages of these
devices, including their main use cases and limitations, primarily categorized by their wavelength
ranges which are the fundamental features of NIRS devices.

• Wavelengths – the wavelength range the device covers. In principle, a NIRS device with a wider
wavelength range can be used to detect more types of components (detailed below for each
product respectively). It is worth noting that, as the spectrum of NIRS usually spreads in multiple
wavelength bands, a higher digital resolution is not the primary consideration in most use cases
(digital resolution – the number of distinct wavelengths within the range). Further, some devices
that also include VIS spectrum or UV spectrum can cover more application scenarios.

• Connectivity – how the device connects to other devices for data transfer. The most common
methods include local storage (e.g., internal storage or secure digital (SD) cards), universal serial
bus (USB), Bluetooth, and WiFi. Other connectivity methods are not included for their infrequent
use in mobile scenarios (e.g., Ethernet).

• UI and apps – the user interface and its corresponding software for interacting with the device.
A mobile NIR device typically has an onboard screen (i.e., standalone mode), or a mobile app
(e.g., Android, iOS, or other mobile devices), or a desktop software.

• Battery – for how long or how many scans the battery can last. Although some devices do not
have an internal battery or battery slot, they can be readily powered up with an external power
band via USB.

Devices with narrow wavelength range. Devices like SPAD 502DL Plus, limited in wavelengths,
are specialized for tasks such as chlorophyll analysis in leaves [16, 164]. Studies with these devices
find that while their narrow focus enables precision in specific scenarios, they can only provide a
limited analysis in broader applications, such as sensing water or nutritional content. Similarly,
devices like SpectraVista GER 1500 and FieldSpec HandHeld are useful in remote sensing and in situ
analysis [16, 147, 164], but are limited to scenarios that fall within their wavelength range.
Devices with wide wavelength range. In contrast, devices like AB Vista NIR4, InnoSpectra NIR,
and TI NIRScan Nano, covering wider wavelength ranges, offer greater versatility across various
applications [13, 24, 62, 170, 176]. These devices are found adaptable to a broad range of scenar-
ios, including the aforementioned leaf analysis and remote sensing scenarios using devices with
narrower wavelengths, and other applications such as forage analysis and chemical composition
estimation. Furthermore, there are devices with extended wavelengths up to 2500 𝑛𝑚, such as mi-
croPHAZIR and Si-Ware NeoSpectra can be catered to specialized applications like berry cell vitality
assessment or soil content analysis [5, 8, 38, 56, 119]. These devices capture a wider spectrum of
information, beneficial for detailed analyses in specific fields. However, while these devices are
mostly designed for general purposes, they may be more expensive or need further procedure such
as data processing as detailed in Section 6.
Key comparisons between devices with narrow- and wide- wavelengths. The evolution of
NIR devices has been driven by diverse application needs, leading to parallel developments in both
narrow and wide-wavelength devices. While wide wavelength devices offer comprehensive analysis
capabilities, narrow wavelength devices continue to be developed for their specific advantages in
cost, simplicity, and targeted application accuracy. This understanding is vital for future research
and development in NIR technology.
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Table 2. A comparison of commercially available mobile NIRS products used by recent studies.

Products Wavelengths Connectivity UI & Apps Battery References
ú    ○  B

AB Vista NIR4 950 - 1750 nm ✓ ✓ ✓ N/A [31]

FieldSpec HandHeld 325 - 1075 nm ✓ ✓ ✓ ✓ 2.5 h [16, 52, 86, 99, 127, 144,
153, 164]

InnoSpectra NIR Series 900 - 1700 nm ✓ ✓ ✓ ✓ N/A [13, 170, 176]

LinkSquare 440 - 1000 nm ✓ ✓ ✓ 1000 scans [124, 182–184]

microPHAZIR 1595 - 2400 nm ✓ ✓ ✓ 5 h [8, 38, 56, 119]

PSR+ 3500 350 - 2500 nm ✓ ✓ ✓ ✓ ✓ 4 h [148]

RCI Aurora NIR 950 - 1650 nm ✓ ✓ ✓ ✓ ✓ ✓ 2-8 h [13, 31]

SCiO Series 740 - 1050 nm ✓ ✓ ✓ 300 scans [13, 31, 101, 126, 155]

Si-Ware NeoSpectra 1350 - 2500 nm ✓ ✓ 800 scans [5]

SPAD 502DL Plus 650 nm, 940 nm ✓ ✓ ✓ ✓ 40 h [16, 164]

SpectraVista GER 1500 350 - 1050 nm ✓ ✓ ✓ ✓ 4 h [147]

StellarNet BLACK-C-SR 200 - 1080 nm ✓ ✓ ✓ ✓ N/A [98]

TI NIRScan Nano 900 - 1700 nm ✓ ✓ ✓ ✓ ✓ N/A [24, 62]

Unispec-SC 310 - 1100 nm ✓ ✓ 4-6 h [136]

ú The device can run in standalone mode with local storage.
 The device can be connected via USB.
 The device can be connected via Bluetooth.
 The device can be connected via WiFi.
○ The device has an onboard user interface (i.e., an onboard screen).
 The device can be operated using a mobile app.
B The device can be operated using a desktop application with GUI.

Notes on commercial mobile NIRS devices. Finally, we emphasize that for mobile scenarios,
connectivity and UI are crucial for usability. Devices with wireless connections and mobile apps
offer ease of use for in situ analysis and potential for future applications. Researchers and developers
should consider devices demonstrated to be effective in their targeted use cases, with suitable
connectivity options, and those offering a wider wavelength range for greater versatility.

4.2 Commercial mobile fNIRS products
From the technology perspective, the fNIRS method can be considered as a specialized NIRS
method. However, rather than focusing on the responses in a range of wavelengths, it concerns
the signal changes in time for multiple channels (measurement locations). As clarified before, a
typical application of fNIRS is to monitor brain activities through cerebral oxygen changes – in
particular the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin [188]. This
makes most fNIRS devices utilize two wavelengths (∼760 nm and ∼850 nm) with multiple probes
(channels) to measure different locations in time.

Similar to NIRS, using a commercial product is the primary choice for conducting studies
that involve mobile fNIRS. Nevertheless, as most commercial fNIRS devices are designed for the
aforementioned brain activity monitoring, there are fewer distinctions among the devices. Here, we
show a comparison of mobile fNIRS devices used in recent studies (Table 3). Besides the features
for NIRS, we also consider the number of channels (#Ch) as a main feature for fNIRS.
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Table 3. A comparison of commercially available mobile fNIRS products used by recent studies.

Products Wavelengths
(nm) #Ch Connectivity UI & Apps Battery References

ú    ○  B

Artinis Medical Systems 760, 850 up to 54 ✓ ✓ ✓ 3 h [20, 44, 108, 115, 189]

Hitachi WOT-100 705, 830 16 - 22 ✓ ✓ ✓ 2-2.5 h [68, 157]

Hitachi WOT-220 705, 830 22 ✓ ✓ ✓ 2-2.5 h [128, 133]

NIRSIT Series 780, 850 up to 48 ✓ ✓ ✓ ✓ 8 h [87, 150, 156]

NIRx NIRSport 2 760, 850 45 - 55 ✓ ✓ ✓ ✓ 5-6 h [89, 166]

NeU HOT-1000 800 2 ✓ ✓ 1.5 h [129, 141, 177]

NeU HOT-2000 800 2 ✓ ✓ 4 h [129]

PLUX Wireless Biosignals 660, 860 4 - 8 ✓ ✓ ✓ 10-20 h [162]

Pocket NIRS Duo 735, 810, 850 2 ✓ ✓ N/A [107, 117]

SenSmart X-100 unspecified 4 ✓ ✓ ✓ 1-3 h [149]

Devices with limited channels. Previous studies find that fNIRS devices with a relatively small
number of channels (less than 10) can only be used in limited applications requiring coarse hemo-
dynamic activity. Examples include NeU HOT-1000, NeU HOT-2000, Pocket NIRS Duo, and SenSmart
X-100, which have only 2, 2, 2, and 4 channels, respectively. Recent studies utilizing these devices
are typically centered around high-level, abstract, or straightforward tasks. For instance, Yamamura
et al. used HOT-1000 to estimate cybersickness in VR for adjusting the user’s field of view, a strategy
that can potentially minimize the user’s cybersickness [177]. Furthermore, Varandas et al. and [107]
show that PLUX Wireless Biosignals and Pocket NIRS Duo can be adopted in detecting cognitive
fatigue [162] and muscle fatigue [107], respectively.
Devices with numerous channels. In contrast, previous studies find that fNIRS products with
an expanded channel capacity (i.e., tens of channels) can be adopted in both simple and complex
tasks. For example, WOT-100 and WOT-220 are frequently employed to monitor brain activity
during various cognitive tasks, including estimating the index of visual fatigue during reading
tasks [157], analyzing acting performance [68], and investigating effects of computer games on brain
activity [133]. Also, the ‘Brite’ Artinis series shows uses case in classification tasks and analysis of
brain activity in dynamic situations, including classifying cognitive event onsets in three cognitive
tasks (simple arithmetic, 1-back, and 2-back memory) [44], investigating transcutaneous photon
transmission for measuring pigmented subjects [20], correlations between brain activity during
sleeping and stress [108], investigating memory-related prefrontal cortex activity in the elderly
with diabetes [189], and even classifying breathing conditions (baseline, loaded, rapid) [115].

Similarly, other devices with a relatively more number of channels show high capability in
various tasks, such as analyzing brain activity in motion, including walking for neurologically
injured patients (NIRSIT Obelab) [87], basketball dribbling [89] and fine-grained brain’s microstates
during surgical tasks [166] (NIRx NIRSport 2). Such devices can also be adopted in monitoring brain
activities during driving such as analyzing brain activity during driving in winter [150] and before
and after take-over request in automated driving [156] (NIRSIT LITE).
Notes on commercial mobile fNIRS devices. Overall, previous studies indicate that the main
limitation for fNIRS is the number of channels. In particular, complex tasks require detailed brain
imaging that cannot be fulfilled by devices with limited channels. However, in general, fNIRS
devices with more channels are usually more expensive. They thus may not be feasible for all
scenarios3. Also, for in-the-wild studies, it can be crucial to include wireless connectivity with

3We are unable to provide reference prices as many of them are not publicly available.
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mobile apps. Referring to the details above and Table 3, as a common guideline for researchers and
developers with limited budgets, it is recommended to choose the mobile fNIRS device that can
accomplish the targeted tasks with a minimal number of channels. With multiple choices, a device
with wireless connectivity and mobile apps would be preferred.

5 MOBILE NEAR-INFRARED PROTOTYPES
Despite the availability of commercial products, certain scenarios still require customization or
development of mobile NIR devices. In particular, as many use cases of mobile NIR devices are
highly correlated to the measurement targets, specific features must be adapted. For example, a
common use case of NIRS is to analyze the chemical compositions of an object (e.g., sugar contents
in fruit or juice). While the objects can have distinct shapes (e.g., sphere-like, powder) or even
different states of matter (e.g., liquid, solid). To achieve optimal performance, the devices must be
adapted to the corresponding objects to acquire higher SNR NIR spectra.

Also, for fNIRS, albeit the availability of commercial devices, there are also particular requirements
that need to be addressed through prototyping. For example, many studies aim to improve the
usability of mobile fNIRS. A main advantage of mobile devices is that the activity of users would
not be constrained to a designated area, compared to desktop ones. Thus, the usability of mobile
fNIRS is a significant factor to be considered (e.g., whether it can be worn by the user comfortably).
There are also other motivations for prototyping mobile fNIRS devices such as improving the SNR
of the signals, or combining with other methods such as BMI for multimodal sensing.
In this section, we show an overall of mobile NIR prototypes. In particular, we group the

prototypes by the underlying technologies into NIRS (Section 5.1), fNIRS (Section 5.2), NIR imaging
(Section 5.3), and other NIR sensing prototypes (Section 5.4).

5.1 NIRS prototypes
We summarize recent studies that involve developing mobile NIRS devices in Appendix Table 1
(sorted by use cases). Besides wavelengths, connectivity and UI, we also include a “computing”
feature showing the onboard computing unit used for the prototype. Furthermore, we find the main
motivations for prototyping instead of using a commercial product as 1) modality and usability,
2) cost, and 3) novel sensing method.
Modality and usability. Depending on practical use cases, the modality of the NIRS scanners
should vary for optimal performance and usability (e.g., liquid, solids, human body). However, it is
infeasible for a commercial product to maintain an exhaustive list of modalities. For example, to
analyze liquids, Jiang et al. designed a 3D printable clamp NIRS device that can be easily used in
everyday scenarios [82]. Also, Aira et al. prototyped SpectroGLY for analyzing glyphosate residues
in water [3], with a mobile app for in situ analysis and a web-based interface for remote access.
Moreover, researchers designed different modalities for NIRS devices for analyzing milk [125, 178].
Likewise, a commercial NIRS device can be used for analyzing forage quality in a dairy farm (e.g.,
[13, 31]). However, as the sample is not homogeneous (i.e., scanning different locations result in
different spectra), users have to scan multiple spots to acquire an optimal result. Alternatively, an
automatic method is to attach a servomotor to stir-then-scan the samples [51, 142]. Other modalities
are designed for various applications, such as soil analysis [46, 191], estimating blood gluten [185],
assessing sleep apnea [12], identifying pharmaceuticals [28, 93], detecting gluten in breads [83],
estimating mango maturity [92], and predicting moisture content in C. oleifera seeds [139].
Reducing cost. For particular applications, specific features are required. Notably, some wave-
lengths can be more effective in those applications. A common commercial NIRS product may
not cover those wavelengths – users may require another high-end or dedicated device that is
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usually expensive. On the other hand, a commercial device may include extra wavelengths that
are unnecessary. In addition, some products may require extra payment for subscription to their
software or additional features (e.g., SCiO), which may be infeasible in the long term.

To this end, researchers have developed mobile NIRS devices that are low-cost yet effective in the
targeted use cases. For example, Chowdhury et al. reported that the wavelengths between 870 nm
and 1000 nm are the most suitable for glucose detection (peaked at 963 nm), while a narrow band
peaked at 845 nm is more suitable for insulin detection [33]. The authors then developed a low-cost
device based on these wavelengths to detect glucose and insulin in the blood. Other studies also
reported similar methods with different wavelengths, including detecting glucose in blood [54, 161],
monitoring blood oxygen [23, 37], leaf nitrogen [186] and water [67], and assisting early diagnosis
of breast cancer [50].
Novel sensing methods. Moreover, researchers also developed prototypes for novel sensing
methods using NIRS. For example, Fouad et al. presented a multimodal sensing method using both
NIRS and bio-impedance spectroscopy (BIS) [54] for monitoring glucose in the blood, achieving
better accuracy compared to NIRS on its own. Further, Jahagirdar and Sharma developed a prototype
to infer glucose in the blood from saliva [54]. In addition, as an example of everyday use cases,
Balakit et al. developed a method to detect the ripeness of watermelon by combining acoustic
analysis and NIR spectra, achieving a higher accuracy compared to using only one of the signals [10].
Also, Hu et al. developed a smartphone attachment with multiple NIR light sources. The authors
successfully estimated food calories using normal photos and NIR spectra [75].
Notes on NIRS prototypes. In short, researchers developed different mobile NIRS devices for
improving usability in different scenarios, reducing cost, or presenting a novel sensing method.
Compared with adopting a commercial device in a study, prototyping a mobile NIRS device can
be significantly more complex. For example, the wavelength is the fundamental factor that affects
the performance of NIRS. However, as the underlying principle in physics is not fully revealed,
researchers have to rely on previous studies to choose the wavelength span, or conduct necessary
experiments to evaluate the performance using selected wavelengths.

Besides wavelengths, it can also be very important to choose other components such as computing
units. Commonly available platforms such as Arduino and Raspberry Pi can be readily used, but they
also have relatively high energy demand. Alternatively, a less complex way for prototyping a NIRS
device is by customizing a commercial product or development kit, such as TI NIRScan Nano and Si-
Ware NeoSpectra-Micro. However, they may have limitations on particular hardware specifications
including wavelengths and modalities. Based on the survey result, we would recommend referring
to the most related use cases as shown in Appendix Table 1 for prototyping.

5.2 fNIRS prototypes
Beyond NIRS, there are also significant studies that involve fNIRS prototypes. Compared to NIRS,
fNIRS devices are mostly used for specific scenarios – monitoring the human brain’s activity.
Therefore, researchers put more focus on improving different aspects of fNIRS. We summarize
mobile fNIRS prototypes developed in recent studies in Appendix Table 2. Furthermore, we highlight
the following three main motivations for prototyping mobile fNIRS devices: 1) improving usability,
2) improving performance, and 3) novel sensing methods.
Improving usability. A fundamental problem for a mobile fNIRS device is usability. As users
need to wear the device for a certain amount of time which can be up to a whole day, it is very
important to make sure the device can be comfortably worn. Also, as most fNIRS devices are still
used for scientific studies, it is helpful for the researchers to make the devices readily operated.
Hence, researchers have made substantial efforts to improve usability for mobile fNIRS devices. For
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example, Saikia et al. developed a mobile fNIRS system that is wearable and connected via WiFi, the
device can be remotely configured through the Internet, allowing easy operation for the researchers
and developers [145]. However, the hardware still requires more development for actual use. In
contrast, Watanabe et al. described how PocketNIRS Duo was developed – a commercially available
device afterward as mentioned in Section 4.2.

Furthermore, several mobile fNIRS devices were developed that can be comfortably worn by the
users. For example, Ha and Yoo showcased an in-ear wearable fNIRS system [66]. Such a design
can reduce the device awareness of users during the study. However, limited by the size of the
device, it only has 1 fNIRS channel with 1 EEG channel. The device is also dedicated to drowsiness
monitoring. Similarly, researchers developed mobile fNIRS devices that are miniaturized [146, 151],
headphone-like [188], or 3D-printed for better fitting [2]. Nevertheless, as a hardware limitation,
they have a relatively small number of channels (e.g., mostly 2 channels) that can only be used in
coarse sensing tasks as described in Section 4.2.
Improving performance. Besides usability, an important issue for mobile fNIRS systems, com-
pared with stationary ones, are signal noises or interference generated by motion. Recent studies
show several promising methods to improve both usability and the SNR for fNIRS. For instance,
Saikia and Mankodiya added a short channel regression that can eliminate background interfer-
ence [146]. Alternatively, Siddiquee et al. presented a method to fuse inertial measurement unit
(IMU) sensors to remove motion artifacts from fNIRS signals [152]. A more straightforward way,
with the advancing of integrated circuit (IC) technology, is to use high-quality bio-optical compo-
nents with low-noise (e.g., TI ADS8688A [100]). In addition, Yaqub et al. presented a high-density
prototype to improve the brain imaging resolution [181].
Novel sensing methods. Beyond usability and data quality, researchers also endeavor to build
novel fNIRS systems including multimodal sensing methods and BMI systems. In particular, Guo
et al. showed a method that measures muscle activity using both surface electromyography (sEMG)
and fNIRS signal [64], and achieved high classification accuracy for gesture recognition, compared
with the fNIRS method [180]. Alternatively, Ha and Yoo developed an EEG-fNIRS system for
monitoring user’s drowsiness [66]. The authors reported 20% classification accuracy improvement
over conventional methods (i.e., using EEG or fNIRS only). Likewise, von Lühmann et al. presented
a EEG-fNIRS method for hybrid BMI in telemedicine and assistive neurotechnology scenarios [165].
In addition, Chen et al. presented a novel dual-level adaptive sampling technique for mobile fNIRS.
By changing the active channel pattern, the authors successfully reduced energy consumption
significantly (up to 46.58% for the LED module), without greatly reducing the performance [26].
Notes on fNIRS prototypes. In short, our survey indicates that researchers devoted to improving
the usability and performance of mobile fNIRS prototypes, and studied novel sensing methods,
particularly multimodal sensing, which combines fNIRS with other physiological sensing techniques
to enrich the data collection of human activities in more effective ways. Compared with fNIRS,
the underlying sensing hardware can be not as complex, as the required wavelengths are mostly
determined (e.g., ∼760 nm and ∼850 nm). However, mobile fNIRS devices intrinsically involve
human subjects that can be challenging to anticipate. Hence, based on the survey results, we note
that mobile fNIRS prototypes should take more consideration for user-related issues, which can
demand sophisticated solutions in particular scenarios.

5.3 NIR imaging devices
Besides NIRS and fNIRS, the mobile NIR imaging method is also useful in many scenarios. As
we summarize in Appendix Table 3, recent studies also include prototyping mobile NIR imaging
devices for different use cases. Notably, the main motivation of NIR imaging is to acquire data
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in space that may be invisible to human eyes. In this survey, we categorize mobile NIR imaging
prototypes into healthcare, eye-tracking, and other use cases.
Healthcare. A main use case of mobile NIR imaging is to image the human body to retrieve
information under the skin. in healthcare scenarios. For example, a recent study by Chowdhury
et al. demonstrated a low-cost implementation of a mobile NIR imaging system for visualizing veins
of arms. The system can be used for assisting intravenous (IV) access (i.e., reducing vein puncturing
failure rate) [34]. Also, Ern et al. validated a portable NIR imaging system for visualizing dorsal
hand veins with different skin tones [49]. Furthermore, Oh et al. developed a handheld NIR imager
for thyroid surgery [131]. The device can help localize parathyroid glands to avoid damaging or
accidental removal of the parathyroid glands during the surgery [131]. Moreover, mobile NIR
imaging devices can also help to detect cancer cells, with different wavelengths and modalities,
such as breast cancer cells for early detection using a handheld system [30], or interoperative
guidance using a goggle display (i.e., head-mounted display or HMD) [57]. Also, Alam et al. showed
a proof-of-concept device for detecting colorectal cancer cells that can be further developed for
practical use [4].
Eye-tracking. Beyond healthcare, researchers also presented multiple mobile NIR prototypes for
everyday scenarios. For example, NIR has been widely used in eye-tracking devices. In particular,
Wang et al. proposed a device for detecting pupil and glint using a NIR LED array and a wearable
camera [167]. The device achieved higher accuracy with more robustness compared to conventional
methods [167]. Furthermore, Mayberry et al. presented a computational eyeglass integrating a NIR
illumination. The authors further developed an indoor-outdoor switching algorithm to optimize
power consumption [118]. A more recent study by Li and Zhou demonstrated an even lower power
eye-tracking glasses that is battery-free. The authors proposed a camera-less design using NIR
LEDs and sensors, with a lightweight inference algorithm and an energy harvesting unit [106].
Other use cases. Besides eye-tracking, mobile NIR prototypes are also developed for other use
cases, including security, gesture recognition, and localization. For example, Hickman developed
a handheld multi-band fusion camera that can be used for security and surveillance in various
contexts. The authors customized a longwave infrared (LWIR) camera (i.e., mid-far infrared) by
adding secondary sensors for both VIS and NIR imaging [69]. A more common security-related
application for NIR imaging is biometric recognition. For instance, Debiasi et al. prototyped a
smartphone peripheral with NIR LEDs and a NIR-pass filter. Using the corresponding mobile app,
the authors succeeded in authenticating users using their vascular patterns (i.e., hand veins) [39]. A
follow-up study by Garcia-Martin and Sanchez-Reillo showed that the same tasks could be achieved
using particular Android phones without hardware modifications, with a customized app and
rooted privilege (i.e., a process to gain superuser permission for low-level system access) [58].
Finally, researchers also developed mobile NIR devices for gesture recognition with lower power
consumption [174], amulti-sensor system for localizing bats that is mobile compared to conventional
methods [71], a mobile phone attachment for imaging embedded tags in 3D prints using NIR
translucent materials [43], a multi-spectral camera for analyzing conservation and restoration of
paper-based artifacts [158] or predicting biochemical variables of grape berries [36], respectively.
Notes on NIR image prototypes. If we consider NIR imaging as an extension of NIRS with an
additional dimension, both techniques can be an alternative to each other for retrieving information
that is invisible to the human eyes. For NIRS, users can acquire more detailed information in
multiple wavelengths, while for NIR imaging, users can acquire more detailed information in space.
Albeit hyperspectral imaging can achieve both, they are still very expensive and challenging to
prototype for mobile scenarios [85]. Nevertheless, our survey result indicates various use cases of
mobile NIR imaging prototypes can be further studied in the future.
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5.4 Other NIR prototypes
Finally, we identify other mobile NIR devices that can be used in various scenarios, as summarized
in Appendix Table 4. It is worth noting that, based on our best knowledge, we re-categorize several
studies ([55, 116, 122]) to general NIR sensing methods, albeit the authors classified their prototypes
as NIRS, while the prototypes do not involve spectral sensing methods.
As highlighted above, the strengths of NIR methods (i.e., NIRS, fNIRS and NIR imaging) are

particularly in the field of healthcare as recent studies have focused on. For instance, the device
developed by Molavi et al. provided a solution for bladder monitoring for patients with neurogenic
conditions, with the strength of activating an alarm when the bladder is full [122]. Researchers
also innovated blood glucose monitoring systems that are cost-effective [81, 116], have improved
SNR[97], or are able to provide insulin dose recommendation[21]. Furthermore, based on the
photoplethysmography (PPG) technique, researchers presented wearable prototypes for monitor-
ing blood oxygen and pulse measurement for remote users [55], or continuous blood pressure
estimation [111]. Compared to alternative techniques, the main advantage of those devices is the
measurements can be taken in a non-invasive manner in real-time. However, the measurements
can be less accurate compared to the invasive ways (e.g., invasive blood glucose measurement is
still considered the golden standard).
Moreover, researchers demonstrated the versatility and strength using mobile NIR sensing

prototypes, such as measuring interaction proxemics in social activities [123], monitoring vocal
fold vibration [32], detecting tea polyphenols [171], and measuring optically equivalent grain size
of snow [60]. Nevertheless, it should be noted that these methods come with their own set of
constraints, as they are often scenario-specific and their performance may not be generalized across
different contexts or use cases.

Finally, there are specific NIR sensing techniques that, while limited in number, present unique
strengths in their respective application domains. For example, Rahman et al. utilized photoacoustics
in near-infrared for characterizing liquid food [140]. Also, Joshi et al. adopted near-infrared for
phototherapy for hyper-pigmentation [88]. Furthermore, Gurulian et al. demonstrated that in the
contactless transaction scenario (e.g., NFC payment), the relay attack can be detected by adding an
artificial ambiance channel between the smartphone and the transaction device using near-infrared
light [65]. In addition, Ismaeel and Kamal showcased a system to control smart-home appliances
using mobile near-infrared communications [77]. Despite the variety of their use cases, those
techniques pertain to the necessity of highly specialized settings or equipment and are limited to
designated scenarios.

6 DATA COLLECTION AND MODELING USING MOBILE NEAR-INFRARED METHODS
We then analyze the data collection andmodelingmethods usingmobile NIR devices. Fundamentally,
compared to stationary devices, mobile devices can be used for various contexts (e.g., locations,
ambient conditions, tasks). To this end, the data collected by mobile NIR devices can vary in
accordance with the scenarios. In this section, we outline the datasets generated in recent studies
using mobile NIR devices (Section 6.1). We further summarize the tasks, as the main motivations
of modeling, that can be achieved using machine learning models, including regression tasks
(Section 6.2) and classification tasks (Section 6.3).

6.1 Data collection
We first summarize the data collection outcomes in recent mobile NIR studies. We note that some
studies (N=44) focus on proof-of-concept prototypes and thus do not include a thorough data
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Fig. 5. Histogram of dataset sizes for mobile NIR studies.

collection process (e.g., validating functionality with one user). Also, some studies (N=20) miss the
necessary details for referring to the dataset size. Overall, we categorize the datasets as follows
• NIRS spectra – one dimensional spectral data by scanning objects using mobile NIRS devices. In
total, 53203 NIRS spectra are reported by 47 studies (with 11 more studies missing details).

• fNIRS records – time series data outputted by monitoring the human brain’s hemodynamic using
mobile fNIRS devices. In total, 6609 records are reported by 6 studies (with 15 more studies
missing details).

• NIR images – two-dimensional images outputted by mobile NIR imaging devices. In total, 44860
images are reported by 8 studies (with 1 study missing details).

• Other NIR measurements – data points in other formats outputted by other mobile NIR devices
(e.g., voltage values as sensor reading). In total, 157 measurements are reported by 5 studies (with
1 study missing details).
We further show the histogram of dataset sizes for recent studies using mobile NIR devices in

Fig. 5. We can observe that most studies report datasets with less than 1000 samples, with several
exceptional cases. In particular, Mayberry et al. collected ∼40000 eye images in their study using
their eye-tracking glass prototype [118]. The relatively large size of the dataset was due to the high
sampling rate of up to 250 − 350𝐻𝑧. Another exceptional case was reported by Moon et al.. The
authors collected 14714 NIRS spectra for salmon, tuna, and beef with different freshness conditions
(fresh, likely spoiled, spoiled) [124]. The data collection was taken automatically every minute
continuously for 30 hours, resulting in a relatively large dataset.

Based on the survey result, we include a comprehensive list of the datasets generated by recent
mobile NIR studies in Appendix Table 5. As data collection can be correlated to the corresponding
studies, it is recommended to refer to similar studies as the references for study design.

6.2 Regression tasks
We then provide a comprehensive analysis of regression tasks and modeling methods for mobile
NIR studies, as summarized in Table 4, along with their advantages and disadvantages in mobile
NIR sensing regression tasks. As a quick reference, we also provide a comprehensive list of the
models that achieve the best performance for those regression tasks in Appendix Table 6.

Overall, regression tasks in mobile NIR typically involve predicting or estimating a target variable
using spectral data as input. Common applications include estimating concentrations of specific
substances, maturity level estimation [169], pupil position or size for eye-tracking [118], and
sugarcane quality prediction [127]. Our survey shows that the partial least squares (PLS) regression
model is the most frequently employed for mobile NIR sensing tasks. In particular, PLS is supreme
in processing high-dimensional NIRS spectra, where each dimension represents a wavelength. This
model is particularly effective due to its ability to handle collinearity among input variables, a
common characteristic in NIRS data [22]. The PLS model projects both input and output variables
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Table 4. Comparative analysis of regression models, ordered from general to specific use cases.

Model Advantages Disadvantages Use cases Ref.
PLS Effective with correlated,

multivariate NIR data
May oversimplify complex
relationships

General NIR applications [6, 7, 38, 46, 62, 119,
127, 139, 142, 153, 155,
169, 170, 175, 178]

SLR Simple and effective for lin-
ear data

Not suitable for multivariate
or non-linear data

Simple NIR datasets with lin-
ear correlations

[76, 80, 125, 171]

MLR Suitable for multivariate lin-
ear data

Limited in handling non-
linear relationships

Multivariate linear NIR anal-
ysis

[82]

RF Robust, handles high dimen-
sionality

Can be computationally in-
tensive

Large, complex NIR datasets [5, 75]

MLP Highly flexible for non-
linear relationships

Requires relatively large
datasets; can easily overfit

Complex NIR patterns [8, 56, 116, 118, 140]

RQGPR Robust in handling noisy
data

Computationally demand-
ing

Noisy NIRS datasets [67]

SVM Accurate, effective for
smaller datasets

Less effective for large
datasets with noise

Small, specific NIR tasks [191]

RoBoost-
PLS

Robust in handling outliers Requires careful tuning of
parameters

Advanced NIR feature anal-
ysis

[36]

PLS-OPS Improved prediction accu-
racy with enhanced variable
selection

Requires complex selection
process with expertise

High-dimensional, complex
NIR data with expertise
knowledge

[24]

Gradient-
Boost

Effective in diverse and com-
plex datasets

Prone to overfitting with
small datasets

Diverse, large-scale NIRS
data

[5]

ELM-
TrAdaBoost

Adaptive boosting for com-
plex data

Requires careful tuning of
parameters

Challenging, non-standard
NIR tasks

[185]

DT Easy to interpret and under-
stand

Prone to overfitting; less ef-
fective with complex data

Easily understandable NIR
models

[79]

to a latent space, maximizing covariance between them. However, PLS models may oversimplify
complex relationships in particular mobile NIR tasks (such as estimating concentrations of a complex
or mixed content), rendering overfitting or performance drop. The single linear regression (SLR)
model, compared to the PLS model, is rather simple. However, the SLR model is also widely used in
mobile NIR regression tasks due to its intuition in interpretations and effectiveness in simple tasks,
making it a viable choice for one-dimensional inputs, such as a specific wavelength effective for a
particular task (e.g., 940 nm for blood glucose measurement).
Beyond PLS and SLR, other regression models can be suitable for different use cases, as listed

in Table 4. For example, multilayer perceptron (MLP) offers versatility in handling both linear
and non-linear relationships, making it suitable for a range of mobile NIR applications [121].
Other models like multiple linear regression (MLR), rational quadratic gaussian process regression
(RQGPR), support-vector machine (SVM), extreme learning machine with transfer adaboost (ELM-
TrAdaBoost), and decision tree (DT) are also employed for specific tasks, each with its unique
advantages and constraints, as elaborated in Appendix Table 6.

6.3 Classification tasks
In contrast to regression tasks, classification tasks in mobile NIR sensing are pivotal for identifying
categories based on the sensing data. Typical applications include ingredient identification using
NIR spectra (e.g., identifying food powders [182–184], liquids [82, 98, 140], or pills [28, 93]), assessing
fruit maturity level [1, 169], and biometric authentication using NIR imaging [135], as shown in
Table 5. As a quick reference, we also provide a comprehensive list of models with best classification
models for specific tasks in Appendix Table 7.

In our survey, we observe that SVM is prevalently used due to its effectiveness in high-dimensional
spaces, as seen in various mobile NIR applications such as the aforementioned ingredient identifi-
cation and biometric authentication [44, 135, 183, 184]. In particular, SVM is prevailing when data
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Table 5. Comparative analysis of classification models, ordered from general to specific use cases.

Model Advantages Disadvantages Use cases Ref
SVM Effective for

high-dimensional data
Less effective for very large
datasets

General NIR classification
tasks

[28, 44, 66, 82, 83, 91, 98,
130, 153, 169, 183, 184]

RF More interpretable, handles
complex datasets

Can be less effective in high-
dimensional data

Complex datasets requiring
feature analysis

[82, 93, 115, 123, 162]

CNN Excellent for image
processing

Requires large datasets, high
computational cost

NIR image classification [72, 124, 182]

PLS Effective for small datasets
with collinear variables

May oversimplify relation-
ships

Small datasets with collinear
variables

[92, 98]

NB Effective in probabilistic
classification

Less accurate with imbal-
anced datasets

Probabilistic tasks with bal-
anced data

[93, 148]

MLP Handles non-linear data Risk of overfitting, computa-
tionally demanding

Non-linear, diverse data
tasks

[140, 157]

DT Easy to interpret Prone to overfitting, less ef-
fective with complex data

Simple, hierarchical
decision-making tasks

[1, 135]

kNN Helpful for feature
distribution visualization

Less effective with noisy,
large datasets

Small datasets with clear fea-
ture distinctions

[82]

LDA Effective in dimensionality
reduction

Less accurate with non-
linear data

Discriminative analysis [64]

HESCA Improves accuracy through
ensemble approach

Computationally expensive Tasks requiring ensemble
methods for accuracy

[98]

BNN Energy-efficient Lower accuracy compared to
complex models

Energy-sensitive, simple
tasks

[26]

J48 Simple to implement Less accurate for complex
datasets

Simple NIR classification
tasks

[101]

points are fewer than dimensions, making it particularly suitable for mobile NIR tasks. However,
SVM can be less effective for very large datasets with high dimensions due to its limitations in scala-
bility and computation complexity in such cases [63]. Alternatively, the RF model is also widely used
in mobile NIR classification tasks. Compared to SVM, RF can be less effective in high-dimensional
spaces while providing greater interpretability. For example, as demonstrated in [82, 93], RF can be
very useful in feature analysis. This is crucial for applications where understanding the relevance
of specific features, such as wavelength importance in NIR spectra.
Other models like J48, CNN, NB, and MLP are selected for their specific strengths in different

classification scenarios. For instance, J48’s simplicity makes it ideal for straightforward classification
tasks [101], whereas CNN excels in image-based classifications due to its superior processing capa-
bilities [72, 124, 182]. We also recognize that some models may not deliver the highest performance
but offer other benefits. For example, kNN, despite its limitations, is excellent for visualizing feature
distributions [82]. The parallelization capability of RF enhances its applicability in handling large
datasets efficiently [82, 93].
In summary, the choice of classification model in mobile NIR sensing should be guided not

only by performance metrics but also by the specific characteristics of the dataset and the desired
outcome of the analysis. Our comprehensive list of models and their use cases, as presented in
Appendix Table 7, aims to aid researchers in selecting the most appropriate model for their specific
mobile NIR sensing tasks.

7 AN OVERVIEW OF MOBILE NEAR-INFRARED SENSING STUDIES
Finally, in this section, we show an overview of mobile NIRmethods. First, to show an overall picture
of the hardware, we analyze the wavelength usage of mobile near-infrared studies (Section 7.2).
Then, based on the survey results, we categorize the studies into particular application domains
and analyze what application domains have focused on during the past decade (Section 7.1). Finally,
to understand the overall study focus in mobile near-infrared sensing, we conduct a topic modeling
to analyze the main research topics in this area. (Section 7.3).
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Fig. 6. Publication ratios by application areas, for each year (left), and cumulative (right).

7.1 Applications of Mobile Near-infrared Technologies
Furthermore, we analyze the applications for mobile NIR technologies. For each study, we first
summarized its main use case concerning mobile NIR methods, then categorized the use cases to
an application area. The application areas are

• Agriculture – including applications concerning crop plants and farming, such as leaf content
analysis [164], soil content analysis [191], crop disease detection [148], and maturity level
estimation [169].

• Environmental – including applications focusing on environmental sensing, such as water analy-
sis [99], snow analysis [60], and studying wild animals [71] or wild plants [147].

• Food computing – including food sensing applications [120], such as food content analysis [83],
drink content analysis [82], and food classification [140].

• Human–computer interaction (HCI) – including human-centered applications, such as gesture
recognition [64], eye-tracking [118], and brain-machine interface (BMI) [130].

• Healthcare – including medical and health-related applications, such as monitoring glucose
in blood [185], monitoring brain activity [2], disease diagnosis [4], assisting surgery [57], and
pharmaceutical identification [93].

• Psychology – including studies related to mental attributes and conditions, such as measuring
cognitive performance [133], drowsiness [66], fatigue [128], stress [108], and anxiety [117].

• Security – including computer security and surveillance-related applications, such as biometric
authentication (e.g., iris [72], hand vein [58]), attack detection [65], invisible labeling for privacy
protection [103], and multi-band surveillance [69].

• Other – other mobile NIR applications that are not categorized due to their rarity, such as
analyzing oil inhibitor content in electrical transformer [102], solid rocket propellant analysis [38],
paint underdrawing identification [173] and monitoring vocal fold vibration [32].

We include a comprehensive application list in Appendix Table 8, as briefed in Fig. 6 for the
application areas. We further categorize the application areas below

Ë Mainstream – healthcare. There are 47 (∼34%) mobile NIR studies for healthcare. In the past
decade, healthcare has been the most important application area and should maintain its signifi-
cance in the near future. The main reason is that, as mentioned above, NIR light is 1) safe to the
human body, 2) transmissive to human epithelial tissue (e.g., skins), while 3) sensitive to some
inner contents (e.g., blood). Hence, NIR methods are ideal for non-invasive, rapid, and continuous
physiological sensing. At the same time, mobile healthcare has become increasingly important
(e.g., home healthcare or remote healthcare) as the result of social issues such as population
ageing [113]. As a result, healthcare remains the mainstream application for mobile NIR methods.
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 Emerging – agriculture and food computing. There are 29 (∼21%) and 18 (∼13%) studies for
agriculture and food computing respectively. Both areas received increased attention in recent
years. It is worth noting that, albeit both areas concern food, agriculture focuses more on food
production, while food computing focuses more on food consumption [120]. However, application
scenarios for both areas pay attention to sensing methods that can be in situ, i.e., mobile, rapid,
without requiring carefully prepared samples – making mobile NIR methods suitable for both
application areas. Furthermore, the underlying social issues such as shrinking farmlands and
starvation also make both areas likely to remain important in the foreseeable future [104].

⋔ Incubating – HCI, psychology, security, environmental and other. There are 18 (∼13%), 9 (∼6%),
7 (∼5%), 6 (∼4%), and 6 (∼4%) studies for HCI, psychology, security, environmental and other
application areas. We are yet to observe a clear trend for applying mobile NIR methods in these
areas. The studies can be innovative but may lack a “killer application” (i.e., a mobile NIR use case
that is indispensable or superior to using alternative methods). For example, gesture recognition
in HCI can be achieved by other wireless signals (e.g.,WiFi, RFID or radio-frequency identification,
or acoustic) with better accuracy and usability [109], while cognitive analysis in psychology can
be achieved by EEG with significantly lower cost but moderate performance [160]. However,
we would like to highlight that, as mobile NIR technologies are still under active development
(Section 5), there is great potential that “killer applications”, likewise in healthcare, agriculture or
food computing, can be “incubated” for these application areas.

7.2 Overview of Devices and Applications
We then show an overview of the connections between mobile near-infrared devices and applica-
tions. On one hand, the features of mobile near-infrared devices such as wavelengths, as detailed in
Sections 4 and 5, directly influence their utility across different domains. On the other hand, the
application trend itself also affects the development of mobile near-infrared devices, necessitating
devices with specialized wavelength capabilities.
For example, in agriculture and food computing, the trend towards comprehensive quality

assessment and non-invasive monitoring has led to the development of devices such as AB Vista
NIR4, TI NIRScan Nano and InnoSpectra NIR, which offer broad wavelength ranges for detailed
spectral analysis [13, 24, 62, 170, 176]. These devices can capture a wide array of information,
making them versatile for various agricultural products and food ingredients.
In contrast, for the healthcare and psychology application domains, particularly in brain imag-

ing and cognitive studies, the demands for precision, sensitivity, and mobility have driven the
advancement of fNIRS systems such as the ‘Brite’ Artinis series and prototypes for particular
scenarios. These systems focus on specific wavelength ranges to accurately monitor hemody-
namic activities, catering to the nuanced requirements of medical or psychological diagnostics and
research [20, 44, 108, 115, 189].

Similarly, the emergence of more applications such as environmental monitoring, security, and
other applications has motivated the development of mobile near-infrared sensing prototypes, such
as particular device modalities for water monitoring [86, 99]. These prototypes are designed to
meet specific environmental or industrial challenges, demonstrating how application demands can
directly shape device innovation. As application trends continue to diversify, we can expect to
see further advancements in near-infrared technology, with devices becoming either increasingly
versatile or specialized to specific application domains in parallel.

In light of such trends, we note that there can be both challenges and opportunities for re-
searchers and practitioners. In particular, the emergence of various applications such as agriculture,
healthcare, and food computing necessitates a comprehensive understanding of near-infrared
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Fig. 7. Word distributions of topic modeling results based on Latent Dirichlet Allocation.

technology, especially in terms of wavelength selection and device capabilities. This trend also
fosters interdisciplinary collaboration, as the effective use of near-infrared technology in diverse
application domains often requires a blend of expertise from multiple fields.

7.3 Topic Modeling for Mobile Near-Infrared Sensing Studies
Finally, to understand the overall aspects of the mobile near-infrared sensing study area, we conduct
a topic modeling based on the title and abstract of the included studies. In particular, we adopted the
Latent Dirichlet Allocation model with 2 - 5 topics [18] (Fig. 7). Also, to find the most meaningful
topics, we filtered the title and abstract with nouns (including common nouns and proper nouns)
and adjectives using the NLTK tool [112]. The results were then reviewed separately. Finally, we
identified the following 4-topic model to summarize the study topics in mobile NIR sensing.
Topic 1: Mobile NIR Sensing in Food Analysis – We observe this topic being predominantly
associated with the application of mobile NIR sensing for food analysis. This topic correlates to
the aforementioned agriculture and food computing application areas for food production and
consumption respectively. In particular, the prominence of words such as “portable”, “content”,
“quality”, “samples”, “spectrometer”, and “food” indicate an inclination towards the use of mobile
NIR devices like NIRS for food content analysis. Further, we note the use of “models”, “prediction”
and “detection” implying the adoption of machine learning models for predicting food quality or
contents. Example studies include content analysis in liquid food [140] and juice [24], fruit maturity
prediction [169], food allergen detection [83], and food freshness estimation [101].
Topic 2: Prototyping Mobile NIR Devices for Physiological Sensing – The second topic
appears to revolve around the adoption of wireless and mobile NIR sensors in physiological sensing.
In particular, words such as “nirs”, “blood” and “monitoring” indicate the usage of NIRS in blood and
other physiological sensing. Furthermore, “wireless” and “portable” imply the mobility and usability
of these devices. In addition, the mention of “design” and “devices” highlights the importance of the
design process in developing efficient and effective mobile NIR sensing devices. This topic reflects
the significance of studies for prototyping mobile NIR devices as we summarized in Section 5.
Example studies include prototypes for blood oxygen monitoring [23], blood glucose estimation [80]
and insulin detection [33].
Topic 3: Brain Activity Monitoring Using Wearable NIR Devices – We identify the third
topic as the application of wearable NIR devices in human activity sensing. In particular, words
like “brain”, “fnirs”, “wearable” and “task” denote the employment of fNIRS in monitoring human
brain activity during various tasks. Similarly, “wireless”, “portable”, and “users” further denote the
focus on making the device more accessible and user-friendly via prototyping. Example studies
include stress analysis based on brain activity during sleeping [108], drowsiness monitoring using
a miniaturized prototype [66], and 3D printed headband for flexible design [2].
Topic 4: Spectral Analysis for Noninvasive Mobile NIR Sensing – The fourth topic focuses on
noninvasive sensing techniques. On one hand, NIRS can acquire spectral data without damaging
the measuring objects, making it ideal for in situ analysis for various tasks. On the other hand,
retrieving meaningful information for the spectral data can be challenging, as the spectrum includes
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Table 6. Comparison of Mobile Near-Infrared Sensing with Alternative Methods

Modality Advantages Disadvantages Key Applications Challenges Opportunities
NIR Sensing Non-invasive, rapid,

sensitive to chemical
properties

Limited penetration
depth, sensitive to en-
vironmental changes

Agriculture, food
computing, medical
diagnostics

Material variability,
environmental noise

Algorithm and hard-
ware improvements,
multimodal sensing

Computer
Vision
(RGB)

Rich visual details,
wide availability

Limited to surface
analysis, affected by
lighting conditions

Object recognition,
surveillance

Lighting variations,
complex context, oc-
clusions

AI-based image
processing, enhanced
sensors

X-Ray High penetration
ability, detailed
internal imaging

Exposure to radia-
tion, limited to inter-
nal structure analysis

Medical diagnostics,
security scanning

Radiation exposure,
image interpretation

Radiation shielding,
digital imaging en-
hancements

Ultrasound Penetrates soft tis-
sues, real-time imag-
ing

Limited penetration
depth, requires con-
tact

Medical imaging, in-
dustrial testing

Operator skill, image
quality

3D imaging tech-
niques, automated
analysis

IMU Accurate motion
tracking, low-cost,
small size

Affected by drift, lim-
ited to motion detec-
tion

Wearable devices, ac-
tivity monitoring

Signal drift, data in-
terpretation

Sensor fusion, cali-
bration techniques

Laser High precision, long-
range, robust to light
changes

Expensive, eye safety
concerns

LiDAR, distance mea-
surement, industrial
automation

Cost, safety regula-
tions

Eye-safe lasers, cost
reduction

WiFi CSI Ubiquitous, non-
intrusive, works
through walls

Lower resolution, af-
fected by environ-
mental factors

Indoor localization,
activity recognition

Multipath interfer-
ence, multi-user
scenarios

Signal processing
advancements, deep-
learning methods

mm-Wave
Radar

High resolution, not
affected by lighting

Expensive, limited
signal range

Automotive radar,
high-precision posi-
tioning and tracking

Deployment in com-
plex environment,
hardware cost

Antenna array de-
sign, control and pro-
cessing algorithms

mixed information about the measurement target. Hence, spectral analysis is an important topic for
mobile NIRS. A common way is to adopt machine learning models as we summarized in Section 6.
Furthermore, Words like “glucose” and “leaf” imply the use of NIRS in healthcare, environmental,
and agriculture areas. Example studies include blood glucose monitoring [161], dairy farm forage
quality analysis [13], and water monitoring [3].
Notes onMobile NIR Study Topics – Overall, we can observe several highlights on all four topics.
For instance, all topics underscore the significance of making mobile NIR sensing applications
more accessible and convenient. Also, they all imply the correlation between the sensing methods
and scenarios. That is, from the perspective of data collection and modeling, it is important to
choose the right sensing techniques and algorithms for particular scenarios. There is yet a universal
solution for most use cases. Moreover, as a reflection of the applications (Section 7.1), there is a clear
highlight on non-invasive, wireless, and wearable technologies across healthcare and food-related
topics. Compared with alternative methods, the usability and non-invasive features make mobile
NIR sensing preferred in those application areas. For that, the importance of “design” implies the
ongoing innovation and evolution in mobile NIR devices.

8 CHALLENGES AND FUTURE DIRECTIONS
Finally, we discuss the main challenges for mobile NIR studies and corresponding future directions,
concerning multimodal and alternative sensing methods (Section 8.1), modeling (Section 8.2),
applications (Section 8.3), and data and security (Section 8.4).

8.1 Comparison and Multimodal Sensing with Alternative Methods
The main advantage of near-infrared sensing is to provide detailed information regarding the
object’s chemical compound in a non-invasive and rapid way [22, 85]. This makes mobile near-
infrared sensing prevalent in material sensing compared with alternative methods, especially
in mobile contexts that requires in situ analysis as shown in our survey. However, it also faces
inherent challenges with limited effectiveness. For a comprehensive comparison, we summarize
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the key advantages and disadvantages of mobile near-infrared sensing and alternative methods
in Table 6, and then discuss future directions of multimodal sensing to address the challenges in
mobile near-infrared sensing.
Key challenges of mobile near-infrared sensing – Our survey highlights multiple challenges
when using near-infrared sensing in a mobile context. A main disadvantage is that near-infrared
cannot penetrate many opaque materials in-depth. In particular, while near-infrared has been
widely used in healthcare for sensing blood such as glucose and hemoglobin that is under the
skin (Section 7.1), it cannot provide more information on deeper tissues such as organs and
bones. Alternatively, X-ray and ultrasound are alternatives for such applications, with different
disadvantages such as safety concerns (X-ray) and operator skill requirements (ultrasound) [73, 85].

Another main disadvantage of mobile near-infrared sensing is its susceptibility to environmental
changes, especially motions in the mobile sensing context. Such changes can interfere with the
signals significantly and cause a performance drop. For example, a study by Siddiquee et al. focused
on removing signal distortions caused by human movement when measuring brain activities using
fNIRS [152]. Similarly, multiple studies developed different modalities to alleviate such issues in
mobile NIRS sensing tasks, as we summarized in Section 5.
Multi-modal sensing in future work – A promising way to address these challenges is to adopt
multimodal sensing by fusing other sensing methods. For example, the aforementioned study by
Siddiquee et al. utilized IMU sensors to estimate human movements for removing interference in
mobile fNIRS [152]. Nevertheless, the method can only work with wearables where the sensors
must be attached to the body. Alternatively, Computer Vision (CV) and WiFi CSI-based sensing
methods are effective in monitoring human activities that are more versatile and can be used in
broader scenarios [114].

Similarly, combining mobile near-infrared sensing with CV can further enhance applications in
agriculture such as crop monitoring. On one hand, existing CV studies utilizing RGB cameras for
smart agriculture focus on texture-based analysis [137], while near-infrared sensing such NIRS and
NIR imaging can provide chemical properties of crops. This fusion enables comprehensive crop
health assessment, overcoming the limitations of either method alone. Such method can also be
used in remote sensing, medical diagnosis, HCI, and security, as demonstrated by several studies in
particular scenarios (e.g., fruit quality monitoring [154], embedding information in 3D printing [84],
biometric identification [135]).
Other mobile sensing methods, such as laser-based ranging and Millimeter Wave (mm-Wave),

can also compensate for NIR sensing methods in a mobile context. For example, laser and mm-Wave
can provide rich context information such as objects’ positions or distances in outdoor scenarios.
Combined with NIR sensing, this information can be useful in applications like environmental mon-
itoring and hazard detection. In such scenarios, NIR sensing can identify chemical characteristics
or changes in vegetation, while laser and mm-Wave sensing offer critical data on topography and
physical obstructions. This allows for a comprehensive analysis of environmental conditions, aiding
in the early detection of potential hazards. Additionally, in agricultural applications, the fusion of
these technologies facilitates precise mapping of crop fields, enabling targeted treatments based on
spatial distribution and derived crop health insights based on NIR sensing [67]. The integration of
near-infrared with laser and mm-Wave sensing enhances decision-making processes, leading to
more effective and efficient outcomes in various mobile sensing applications.
In summary, the integration of NIR sensing with other mobile sensing methods represents a

significant research opportunity. The multimodal approaches can effectively leverage the strengths
of diverse sensing technologies. This can help address the inherent limitations of mobile NIR
sensing and enable more sophisticated applications.
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8.2 Machine learning methods for mobile NIR sensing
With the availability of datasets, researchers can then focus on improving algorithms for mobile NIR
sensing methods, particularly with machine learning methods. The main challenge for modeling a
mobile NIR sensing task is the tradeoff between scalability and computational cost.
Scalability consideration – First of all, most existing studies only adopt conventional machine
learning methods (Section 6.2 and 6.3). Certainly, conventional machine learning methods can
achieve acceptable performances with low computational costs. However, those models can only
be used for a specific task and may not be transferred to other tasks. In practice, users have to
change or train a new model once the scenario is changed, with a strong assumption that the users
already know what the task is. For example, Jiang et al. used the same NIRS hardware but trained
different machine learning models for different liquid contents [82], while users have to know
the content categories beforehand (e.g., sugar, alcohol or milk). Conventional machine learning
methods, nevertheless, have limited learning capacity and scalability and can yield significant
performance loss for more complex tasks (e.g., classifying liquid contents using NIRS without prior
knowledge, with hundreds of possible categories and a large dataset) [190].

In addition, certain mobile NIR sensing tasks also require more sophisticated machine learning
models to achieve better results. For example, recent studies in artificial intelligence (AI) show that
deep learning models can achieve significantly better performances on image processing [132] and
time-series data processing tasks [78]. In particular, with higher NIR imaging resolutions and more
fNIRS channels, conventional machine learning methods will be further disadvantaged.
Computational consideration – While deep learning methods have demonstrated superior
performance, they have not been widely adopted in mobile NIR sensing tasks. In addition to the
aforementioned dataset limitations, deep learning algorithms are predominantly computationally
intensive, posing a considerable challenge when applied to mobile devices that are constrained in
their computational capacity and energy resources [29].
To address this issue, a possible solution could be transferring raw data to a remote or edge

server that runs the deep learning model and returning the inference results to mobile devices (e.g.,
the study in [3] used a remote server for data analysis). However, this method requires significant
networking resources such as transmission. It also raises additional concerns including latency and
privacy [40], in particular for the mobile sensing tasks that involve human subjects such as fNIRS.
Alternatively, the prospect of integrating a deep-learning-enabled chip within mobile devices

is being explored (e.g., many mobile System-on-Chip (SoC) solutions support deep learning dif-
ference [168]). This method integrates deep learning capabilities directly into mobile devices in
a more energy-efficient way, and bypasses the need for data transmission (e.g., the study in [43]
used on-device near-infrared imaging processing algorithm in a smartphone). However, this can
complex the hardware architecture, making mobile near-infrared devices a less feasible solution
compared to alternative techniques (e.g., NIRS is cheaper than high-accurate laboratory test, while
fNIRS is much cheaper than the high-resolution fMRI).

Furthermore, we recognize that different NIR sensing tasks have varied computational require-
ments. The analysis of high-dimensional spectral data derived from the NIRS method, or multi-
channel time-series signals from the fNIRS method, may require disparate computational strategies
(e.g., fNIRS may require real-time processing). Therefore, algorithmic optimization for these tasks
must be considered for these distinctive computational needs.
The tradeoff and opportunities – There are several ways to achieve a tradeoff between scalability
and computational cost. One promising way is to design a compact model for mobile devices [179].
However, such a method is still limited by the computational and energy resources for mobile
devices, in particular for relatively complex tasks. An alternative solution can be only partially
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processing data in the local devices, with an optimization target to achieve relatively low energy
consumption and delay, while maintaining data privacy and high performances [187]. The inclusion
of edge computing techniques [187], federated learning [110], and on-device AI [48] also offer
promising avenues to help alleviate some of these computational constraints and open up new
opportunities for mobile NIR sensing tasks.
The research gap, however, is that current studies predominantly focus on deep learning tasks

using datasets collected in particular scenarios (such as image classification and object detection)
and may not be directly applicable to mobile NIR sensing tasks. Many mobile NIR sensing tasks
require in situ analysis such as detecting food allergen in food computing [83], or “in the wild”
data collection such as environmental sensing [3], or both. The requirements of these tasks can
significantly differ from those in different scenarios. Moreover, NIR data are unique in their nature.
For instance, NIRS results in high-dimensional spectral data, whereas fNIRS generates multi-channel
time-series signals. With spectral NIR imaging, the data can be more intricate than typical images,
with more channels at different wavelengths than the basic red-green-blue (RGB) channels. To the
best of our knowledge, and according to our survey results, there are not many studies focusing on
optimizing mobile NIR sensing tasks, leaving a research gap for future studies.

8.3 Human factors in mobile NIR applications
Next, besides the advancement of mobile NIR sensing methods, it is also crucial to expand the
application areas in practice. As we observed in Section 7.1, beyond the mainstream healthcare
studies, there are great potentials for mobile NIR sensing to be further adopted in more areas such
as agriculture, food computing and HCI.
However, many existing studies for mobile NIR sensing focus on the technical aspects while

underestimating human factors. In fact, compared with stationary setups, mobile devices are highly
correlated with user behaviors [42]. For instance, a typical food computing application involves a
user acquiring some data for the food as the input (e.g., a NIRS spectrum or a photo), while the
output (e.g., food category or composition) can be impacted by how the data are acquired (e.g.,
different angles or distances) [94, 120]. This leaves a significant research gap for bringing a mobile
NIR sensing technology into real-life [95, 120].
To this end, for incubating more practical applications, future work for mobile NIR sensing

applications should also consider human factors in both design and evaluations. For example,
Siddiquee et al. presented a method to remove motion artifacts from mobile fNIRS signals, making
it more practical for real-life applications such brain-machine interface [152]. Also, for the same
technology, different interface designs may even impact users’ trust towards the technology, which
can eventually affect the growth of the application area, as shown by Jiang et al. in a gluten detection
task using mobile NIRS [83].
In summary, we believe an important direction for mobile NIR sensing is to incorporate more

human factors in future studies. As a result, in practice, mobile NIR sensing methods can be better
adopted, accepted, and used by more users.

8.4 Data availability and security in mobile NIR sensing
Data availability – Beyond algorithms, a fundamental issue that hinders mobile NIR research is
dataset availability. Many researchers have to generate their own datasets for further studies. This
not only limits mobile NIR studies to those who can access or build the devices, but also prevents
researchers from cross-validates their findings by referring to datasets generated by others, resulting
in less connection among the mobile NIR sensing studies. To date, there are limited open-sourced
NIR datasets available that are either for particular scenarios or with relatively small sizes. Existing
NIR datasets include the CASIA NIR-VIS Face Database (725 subjects, 17580 images) [105] for
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NIR imaging, unilateral finger- and foot-tapping dataset (30 participants) [9] and openFNIRS4 (12
datasets with 5-43 participants) for fNIRS, and global soil VIS-NIRS database [11].
Nevertheless, as we shown in Section 6.1 and Appendix Table 5, there are ∼100 mobile NIR

datasets generated in the past decade, while few of them are open-sourced (e.g., hand vein images
in [39] and [58]). In addition, datasets in Appendix Table 5 are collected using mobile devices that
can be more practical in real-life settings. Hence, it would be highly beneficial for researchers and
developers to have access to those datasets.

A potential solution is by adopting the Open Science framework [53, 163]. In recent years, there
has been an increased demand for making research projects, study designs, datasets, source codes,
and tools publicly or partially available to others [163]. The main concern, however, is privacy issues.
For example, many fNIRS data include participants’ brain activities that can be highly sensitive. A
promising way to address this issue is to cede the ownership of the data to the participants [41].
Datasets with privacy concerns can only be published with the consent of the who generated them
instead of the researchers. Other datasets without such issues can be then published by researchers
using the Open Science framework [53].
Data security – In addition to the data availability issue, there are missing data security-related
studies in mobile near-infrared sensing. Our survey identifies several security-related applications
using mobile near-infrared techniques, such as biometric recognition-based authentication methods
using vein patterns [58] or iris patterns [72]. However, few studies focused on data security. Mobile
NIR sensing, like any other data-intensive technology, can be susceptible to various forms of
security threats, such as unauthorized access, data leakage, and manipulation of the data.

At the current stage, mobile near-infrared devices are mostly used by researchers and developers
who are responsible for data security. And thus the data are mostly managed in a laboratory
standard. Nevertheless, in the future, we envision that mobile near-infrared devices can be adopted
in broader scenarios For example, our survey identifies several studies that show fNIRS can be
used as a human-computer interface [91, 157, 165]). Also, mobile NIRS can be widely adopted
in food computing such as food freshness prediction [124]. allergen detection [83], and Calorie
estimation [75]. Hence, the significance of security concerns escalates in mobile scenarios in the
future. First, the devices will be mostly managed by end-users who are not necessarily trained for
data protection, making them more exposed to security threats. Second, mobile devices are often
personal, containing rich sensitive information about individuals, thereby intensifying the need
for robust security methods. For instance, NIRS data used in healthcare applications can include
highly sensitive personal health information. Without appropriate data security protection, there
are risks of exposure that can lead to privacy invasion, identity theft, or insurance fraud.
Furthermore, we highlight that data security in mobile near-infrared sensing involves two

primary dimensions - the security of the data in collection, communication, and storage. Firstly,
as near-infrared sensing utilizes light transmission and reflection, there can be light leakage that
can be detected by eavesdropping. Previous studies also indicate the device can be identified based
on the sensing data, leading to device usage data or even user data leakage [19]. Second, many
mobile NIR devices provide wireless connections to transmit data to an edge device for processing
or storage (e.g., miniaturized NIRS using Bluetooth to transmit data to mobile phones [51, 142])
without encryption. The transmission can be easily captured by other wireless devices, resulting
in data leakage. Third, the collected data by mobile NIR mobile devices are mostly stored in plain
format without encryption, leaving a risk of unauthorized access. Hence, security features should
be designed to protect data. For instance, leakage-prevention mechanisms should be designed to
prevent eavesdropping during data collection. Also, encryption techniques and rigorous access

4https://openfnirs.org/
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control and authentication mechanisms should be employed to protect the data in transmission
and storage, preventing unauthorized access to the data.
In summary, while much work has been done to secure mobile data in general, studies on

the specific challenges related to data security on mobile near-infrared sensing methods are still
missing. Future studies should address this gap by developing innovative security methods tailored
to the unique characteristics and requirements of mobile near-infrared sensing (e.g., eavesdropping
during data collection). With the growth of mobile near-infrared sensing devices, the data security
challenge becomes increasingly critical.

9 CONCLUSION
In this survey, we systematically reviewed recent studies in mobile NIR sensing methods including
devices, data collection, modeling, and applications. In particular, we observe that studies concerning
mobile computing are popular. We also note that there are many challenges and opportunities for
this study area including the lack of datasets, modeling, applications and data security that should
be addressed in future studies.

We also note several limitations to our survey. First, as we only considered studies that explicitly
involve mobile NIR methods, there may be studies that are not included in this survey but utilize
mobile NIR as their underlying technology. Also, we only included studies from the past decade
(2012 - 2022). However, as mobile NIR devices are emerging recently, earlier studies can be limited
by hardware that may be obsolete. Finally, as our survey aims to give an overview of the study
area, we do not provide a more in-depth analysis of the technology itself. Further surveys can focus
on one aspect with more detailed reviews (e.g., device, data collection, modeling, or application).
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Appendix
Appendix A MOBILE NEAR-INFRARED PROTOTYPES
We provide a comprehensive list of prototypes from recent studies using mobile near-infrared (NIR)
sensing methods. For analysis, please refer to Section 5.

Appendix Table 1. Prototypes using NIRS method developed in recent studies.

Ref. Use cases Wavelengths
(nm) Computing Connectivity UI & apps

ú    ○  B

[186] Analyzing corn leaf 450, 600, 880 Raspberry Pi ✓

[51] Analyzing dairy farm forage
quality

900 - 17001 LOLIN D32 ✓ ✓ ✓ ✓

[142] Analyzing dairy farm forage
quality

900 - 17001 TI TM4C129 ✓ ✓ ✓

[82] Analyzing everyday drinks 900 - 17001 Raspberry Pi ✓ ✓ ✓

[75] Analyzing food nutrients 940, 1050,
1200, 1300,
1450, 1550,
1650

Arduino ✓ ✓ ✓ ✓

[3] Analyzing glyphosate residues
in waters

410 - 9402 ESP32 ✓ ✓ ✓ ✓ ✓

[76] Analyzing liquid contents 510, 880 smartphone ✓ ✓

[102] Analyzing transformer oil
inhibitor content

1388 - 1412 Raspberry Pi ✓ ✓ ✓

[12] Assessing sleep apnea 700 - 1000 BGM121 SiP ✓

[92] Classifying mango maturity
index

1350 - 25003 Raspberry Pi ✓ ✓ ✓ ✓

[47] Detecting extravasation
during injection

760, 850 TI CC3200 ✓ ✓ ✓

[1] Detecting fruit quality 520, 670, 920,
970, 1050,
1320

Arduino ✓ ✓

[169] Detecting fruit quality and
maturity level

900 - 17001 ESP8266Ex ✓ ✓

[83] Detecting gluten in bread 900 - 17001 TI TM4C129 ✓ ✓ ✓ ✓

[33] Detecting insulin and glucose
in blood

850, 890, 935,
950

Atmega32 ✓ ✓

[125] Detecting milk adulterations 970, 1450,
1200

NXP HCS08 ✓ ✓ ✓

[178] Detecting milk composition 650 - 11002 Raspberry Pi ✓ ✓ ✓ ✓

Continued on next page
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Appendix Table 1 – continued from previous page

Ref. Use cases / motivation Wavelengths
(nm) Computing Connectivity UI & apps

ú    ○  B

[46] Detecting soil nitrogen 1300 - 2400 Raspberry Pi ✓ ✓

[191] Detecting soil nitrogen and
moisture

1260, 1330,
1360, 1430,
1530, 1580,
1660, 1450

NXP JN5139 ✓ ✓ ✓

[50] Diagnosing breast cancer 740, 810, 850 ATmega328 ✓ ✓

[79] Estimating glucose in blood 800 - 1000 Arduino,
Raspberry Pi ✓

[67] Estimating leaf nitrogen and
water

450, 500, 550,
570, 600, 610,
680, 730, 760,
810, 860

Raspberry Pi ✓ ✓ ✓

[6] Estimating sugar content in
breakfast cereals

1350 - 25603 unspecified ✓ ✓ ✓

[10] Estimating watermelon
ripeness

unspecified Raspberry Pi ✓ ✓

[93] Identifying pharmaceuticals 900 - 17001 TI TM4C129 ✓ ✓ ✓

[28] Identifying pharmaceuticals 900 - 17001 TI TM4C129 ✓ ✓ ✓

[37] Monitoring blood oxygen and
heart rate

660, 910 CC2540 ✓ ✓

[23] Monitoring blood oxygen and
heart rate

660, 940 CC3200 ✓ ✓

[80] Monitoring glucose and
bilirubin in blood

470, 940,
1550, 1650

ATMega32 ✓ ✓ ✓

[54] Monitoring glucose in blood 850, 880, 940 ATmega328 ✓ ✓

[185] Monitoring glucose in blood 900 - 17001 TI TM4C129 ✓ ✓ ✓

[161] Monitoring glucose in blood 630, 940 Arduino ✓ ✓

[59] N/A (a design for mobile NIRS
prototype)

900 - 17001 TI TM4C129 ✓ ✓ ✓ ✓ ✓

[139] Predicting moisture content in
C. oleifera seeds

900 - 17001 TI TM4C129 ✓ ✓

[7] Screening soybean quality 1350 - 25603 unspecified ✓ ✓ ✓

1 Based on NIRScan Nano.
2 Based on STS-NIR.
3 Based on Si-Ware NeoSpectra-Micro.
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Appendix Table 2. Prototypes using fNIRS method developed in recent studies

Ref. Motivation Wavelengths
(nm) #Ch Computing Connectivity UI & apps

ú    ○  B

[145] Improving usability,
configurable remotely

770, 850 10 Raspberry
Pi

✓ ✓

[66] Improving usability,
multimodal sensing

670, 850 21 Custom
SoC

✓ ✓

[17] Monitoring water
concentration in blood

735, 780, 810 12 Microchip
DSPIC

✓

[180] Monitoring muscle
activity

730, 805, 850 6 TI MSP430 ✓ ✓

[188] Improving usability,
low-cost

760, 850 1 nRF SoC ✓

[146] Improving usability and
SNR

770, 850 2 Raspberry
Pi

✓ ✓

[64] Multimodal muscle
activity monitoring

730, 805, 850 42 TI MSP430 ✓ ✓

[130] fNIRS-BMI feasibility
study

780, 805, 830 8 unspecified ✓ ✓

[181] Improving usability and
spatial resolution

735, 850 128 mbed
LPC1768

✓ ✓ ✓

[100] Improving usability and
SNR

730, 850 8 STM32 ✓

[2] Improving usability,
low-cost

770, 830 10 ATmega32U4 ✓ ✓

[172] Improving usability,
released as a product

735, 810, 850 2 unspecified ✓ ✓ ✓

[91] Developing fNIRS-BMI
system

735, 810, 850 2 unspecified ✓ ✓ ✓

[165] Developing mutimodal
BMI system

750, 850 63 Cortex M4 ✓

[152] Improving SNR during
motion

850 24 TI CC3200 ✓

[151] Improving usability 760, 840 2 TI CC2540 ✓ ✓

[26] Increasing energy
efficiency

735, 850 18 FPGA ✓ ✓ ✓

1 1 fNIRS + 1 EEG, 2 fNIRS + sEMG hybrid, 3 2 fNIRS + 4 EEG, 4 with + without motion.
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Appendix Table 3. Prototypes using NIR imaging method developed in recent studies

Ref. Use cases / Motivations Wavelengths
(nm) Computing Connectivity UI & apps

ú    ○  B

[158] Analyzing conservation
and restoration of paper-
based artifacts

248 - 1050 unspecified ✓ ✓

[30] Detecting breast tumor 600 - 1000 XC3S1000
FT256 FPGA

✓ ✓

[4] Detecting colorectal cancer
cell

673, 702 Arduino ✓ ✓

[167] Detecting pupil and glint 850 unspecified ✓ ✓

[49] Dorsal hand vein imaging 850 unspecified ✓ ✓

[43] Embedding interactive tags
into 3D prints

800 - 850 Raspberry Pi
NoIR

✓ ✓ ✓

[106] Eye-tracking 940 TI MSP432 ✓

[118] Eye-tracking Unspecified STM32 ✓

[174] Gesture recognition Unspecified Atmel
SAMA5D31

✓ ✓

[57] Image guided surgery 820 XEM3050
FPGA

✓

[71] Localization of bats Unspecified Rapberry Pi,
Zynq-7000
FPGA SoC

✓ ✓ ✓ ✓

[36] Predicting biochemical vari-
ables of grape berries

400 - 1000 unspecified ✓ ✓

[58] Recognizing vein biometric 960 smartphone ✓ ✓

[69] Security and surveillance 750 - 1100 unspecified ✓

[131] Surgery assistant 760, 830 Jetson TX-2 ✓ ✓

[39] Vascular pattern of hand-
veins imaging

940 smartphone ✓ ✓

[34] Vein imaging 850 - 890 unspecified ✓ ✓ ✓
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Appendix Table 4. Prototypes using other NIR sensing methods developed in recent studies.

Ref. Use cases Wavelengths
(nm) Computing Connectivity UI & apps

ú    ○  B

[60] Analyzing snow
optically equivalent
diameter (OED)

950 TI MSP430 ✓ ✓

[122] Detecting bladder filling
to capacity

950 TI MSP430 ✓ ✓

[171] Detecting tea
polyphenol detection for
quality control

765 STM32 ✓ ✓ ✓

[111] Estimating blood
pressure

525, 630, 850, 9401 TI MSP432 ✓

[123] Measuring interaction
proxemics

950 nrf51822 SoC ✓ ✓

[55] Monitoring blood
oxygen and heart rate

660, 9401 TI MSP430 ✓

[116] Monitoring glucose and
bilirubin in blood

9401 unspecified ✓ ✓ ✓

[97] Monitoring glucose in
blood

940 unspecified ✓ ✓

[21] Monitoring glucose in
blood

1550 Arduino ✓ ✓

[81] Monitoring glucose in
blood

unspecified Raspberry Pi ✓ ✓ ✓

[32] Vocal fold vibration
monitoring

8502 N/A

1 Using photoplethysmography (PPG).
2 Using photoglottography (PGG).
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Appendix B MOBILE NEAR-INFRARED DATA COLLECTION
We provide a comprehensive list of datasets generated from recent studies using mobile near-
infrared (NIR) sensing methods. For analysis, please refer to Section 6.1.

Appendix Table 5. NIR-related dataset generated in recent studies.

Ref. Dataset Description

[118] ∼40000 eye images ∼2500 eye images each participant, 16 participants

[124] 14714 food spectra

1031, 1042, 1129 for salmon (Atlantic), 1055, 1095, 1457 for salmon (Pacific),
840, 978, 1045 for Tuna, 1545, 1803, 1694 for Beef, for 3 conditions of fresh,
likely spoiled, spoiled, respectively. 15, 15, 17, 16 samples each food, 1 min
per scan

[75] 12500 spectra 500 scanes per sample, 1 sample per food, 25 foods

[117] 4000 fNIRS records 58 participants, all with 180 sec of resting condition, 19 "younger" partici-
pants with 60 sec of mental arithmetic task

[82] 3654 liquid spectra

Modeling: 450 spectra (225/225 spectra for train/test, 18 spectra per sample,
25 sucrose solutions with 0 - 20 g/100ml concentrations)
Testing: 2916 spectra (18 spectra per sample, 18 everyday drink samples, 9
ambient conditions)
Testing: 243 spectra (3 spectra per sample, 9 sugar samples containing
glucose, fructose, and their mixture with 5, 10, 15 g/100ml concentrations,
9 ambient conditions)
Testing: 45 spectra (3 spectra per sample, 15 samples containing diluted
liquor, milk, perfume with 0%, 25%, 50%, 75%, 100% of water volume)

[58] 2500 wrist images 50 participants with 100 wrists, 25 images per wrist), database open source

[31] 2228 forage spectra over 600 haylage, corn silage and total mixed ration samples were collected

[98] 2000+ alcohol spectra 3 spectra per sample, 3 samples per solution for 40%, 35%, 38% alcohols,
40% alcohol + 1%, 2%, 5% methanol, in 44 bottles

[8] 1980 spectra 3 scans per position, 10 positions per sample, 66 samples from 6 groups
with 11 adulteration levels each

[130] 1200 fNIRS records 3 participants, 40 trials per session, 30 sessions in total, including 4 daily-
living actions

[183] 1200 food powder
spectra

1000/200 spectra for train/test, 150 spectra each sample, 8 food powder
samples

[83] 1134 tortilla wrap
spectra

Modeling: 486 spectra (3 scans per location, 3 locations per sample, 3
samples per product with different package conditions, 18 tortilla wrap
products with 9 gluten-free)
Testing: 648 spectra (18 spectra each participant, 36 participants)

[72] 1008 iris images 28 participants, with 56 irises

[184] 960 food powder
spectra

800/160 spectra for train/test, 8 food powders of salt, sugar, cream, flour,
bean, corn, rice, potato

Continued on next page
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Appendix Table 5 – continued from previous page
Ref. Dataset Description

[155] 930 turmeric powder
spectra

30 spectra per sample, 31 powdered turmeric samples from commercial,
farms and traders

[39] 920 hand vein images 31 participants, open-sourced

[142] 900 alfalfa spectra 1 spectrum each sample position, 10 positions per sample, 90 alfalfa samples

[56] 864 berry tissue
spectra

2 spectra per sample, 216 berry samples per cultivar, 2 cultivars, 648/216
spectra for train/test

[182] 800 food powder
spectra

640/160 spectra for train/test, 100 spectra each sample, 8 food powder
samples

[169] 720 berry spectra 3 spectra each samples, 240 sweet cherries samples from 4 cherry tree

[170] 720 tea leaf spectra 10 spectra each sample, 72 leaf samples from 2 varieties of tea plants

[92] 700 spectra 4 locations per sample, 175 samples

[153] 600 spectra 150 spectra per group, 4 groups

[64] 520 fNIRS records 1 participant, 10 trials each gesture, 13 gestures, repeated 4 times in 4
different days

[62] ∼480 tobacco spectra 360/120 spectra for train/test, 2 spectra each sample, 240 tobacco samples,
total sugar, reducing sugar, nicotine, total nitrogen

[93] 480 pill spectra

Modeling: 400 spectra (1 spectrum each sample, 20 samples per category,
20 categories of pills)
User study: 80 spectra (8 participants from care workers, 10 scans each
participant)

[38] 472 propellant
spectra

8 spectra removed from total 480 spectra, 20 mix iterations of CL-01 pro-
pellant

[28] 450 pill spectra 1 spectrum each sample, 20/5 samples per category for train/test, 18 cate-
gories of pills

[149] 396 fNIRS records 18 data points per participant, 22 participants

[7] 366 soybean spectra 3 spectra per sample, 107 soybean samples, 15 soybean product samples

[164] 350 winter wheat leaf
spectra

Feekes growth stage 5, 6, and 9 for winter wheat, 64 experimental plots

[147] 349 macrophyte
spectra

16 macrophyte species, 7 locations, scanned in different time

[178] 320 milk spectra 1 spectrum each sample, with 120/40 raw milk samples, 120/40 homoge-
nized milk samples for train/test

Continued on next page
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Appendix Table 5 – continued from previous page
Ref. Dataset Description

[67] 307 leaf spectra

Nitrogen experiment: 121 spectra (1 spectrum each sample, 121 leaf samples,
N fertilization at 0, 6, 12, 20 𝑔 · 𝐿, 3 times per week, in 64 plants, 4 species –
canola, corn, soybeans, wheat)
Water experiment: 186 spectra (1 spectrum each sample, 186 leaf samples,
water applications at 50, 100, 150, 200 mL, 3 times per week, in 64 plants, 4
species – canola, corn, soybeans, wheat)

[148] 300 leaf spectra 25 spectra per plant sample, 12 plant samples with 2 genotypes in control
and infested groups

[36] 274 images 126, 63, 85 images for Syrah, Fer-Servadou, Mauzac grape barries, respec-
tively

[115] 273 records 13 records per participant, 21 participants

[136] 269 leaf spectra
Modeling: 207 spectra (104 spectra from diseased plants, 103 from healthy
plants)
Testing: 62 spectra (30 spectra from diseased plants, 32 from healthy plants)

[26] 240 spectra 12 participants, 20 data points per participant, 30 seconds per data point

[176] 230 spectra 1 scan per sample, 10 samples per batch, 23 batches from 8 medicines

[162] 220 records 10 participants, 22 data points per participant for 4 tasks

[46] 210 soil spectra
Modeling: 200 spectra (120/76 spectra for train/test, 4 spectra invalid, 5
spectra per sample at different locations, 40 soil samples)
Testing: 10 spectra (10 soil samples)

[119] 204 spectra 3 scans per sample, 68 samples

[79] 200 glucose solution
spectra

140/60 spectra for train/test, over 200 glucose solutions with 0.5 - 3 mg/dL
concentrations

[139] 184 spectra 1 scan per sample, 184 samples

[191] 160 soil spectra 80 soil total nitrogen and 80 soil moisture

[52] 150 cotton canopy
spectra

30 spectra each class, 5 classes of non-thermal-treated, N75-T25, N50-T50,
N25-T75, thermal-treated

[126] 140 bread spread
spectra

20 spectra per sample, spreads blended with saturated fatty acid at 0, 0.01,
0.02, 0.05, 0.10, 0.20, 0.50 g/g

[1] 140 apple spectra 140 apple samples with 70 ripe and 70 unripe

[127] 134 sugarcane spectra 1 spectrum each sample, 24 FS samples, 24 CJ samples, 24 RJ samples, 31
SCS samples, 31 SS samples

[135] 92 left hand images 10 participants, 10 photos each participant, 8 removed
Continued on next page
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Appendix Table 5 – continued from previous page
Ref. Dataset Description

[99] ∼90 heavy metal
solution spectra

10 spectra each, lead, zinc, copper solutions with 500, 1000, 2000 mg/L
concentrations

[175] 90 Yinhuang solution
spectra

Modeling: 45 spectra (mean of 3 spectra per sample, 45 Yinhuang oral
solutions with 1, 2.5, 4, 5, 6.5 mg/mL of Baicailin)
Testing: 45 spectra (mean of 3 spectra per sample, 45 Yinhuang oral solu-
tions with 2, 3.5, 4.6, 6 mg/mL of Baicailin)

[185] 75 blood glucose
spectra

26 participants, train/test split: 60/15

[81] 70 blood glucose
measurements

1 measurement per participant, 70 participants

[144] 60 weed spectra 10 spectra per species, 6 weed species

[5] 54 spectra 3 scans per sample, 18 samples

[116] 51 blood glucose
measurements

89 participants, fasting conditions between 8 hours no eat and 4 hours
after eat, 38 data points excluded due to low quality

[140] 45 liquid spectra

12 spectra of blue dyes (0, 0.001%, 0.01%, 0.05%), 15 spectra of 5 milk
solutions (pure milk, 2 ml detergent, 1.5 g salt, 1.5 g starch, 2 ml water in
20 milk), 18 spectra of 6 alcohol solutions (100%, 80%, 60%, 40%, 20%, 0%
rum in water)

[34] 40 vein images 5 images per participant, 8 participants

[102] 30 oil spectra 5 oil samples with 0.2, 0.3, 0.4, 0.5, 0.6 w/w% concentrations

[4] 26 cell images 13 cancer cells, 13 control cells)

[125] 20 milk spectra 10 spectra per sample, 2 milk samples, 0%, 25% water

[180] 16 arterial voluntary
contraction
measurements

4 participants, arterial occlusion and isometric voluntary forearm muscle
contraction, maximum voluntary contraction at 10%, 30%, 50% and 100%

[171] 10 tea measurements 10 tea samples

[60] X snow block
measurements

with orientational and spatial variability

[3] X spectra 45 samples from 4 component categories

[150] X records 20 participants, 5 events

[66] X fNIRS+EEG records 1 participant, Oxford Sleep Resistance Test, 20 times each task

[24] X spectra 282 samples

[189] X records 20 participants with 19 elderly and one 38 age-matched controls
Continued on next page
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Appendix Table 5 – continued from previous page
Ref. Dataset Description

[107] X records 6 participants

[10] X spectra 300 samples

[156] X records 20 participants

[166] X records 13 students + 9 experts

[128] X fNIRS records 12 participants, 6 repeated reading experiments per participants

[89] X fNIRS records 20 participants, basketball dribbling 16 times for ∼10 sec while sitting on a
chair

[157] X fNIRS records 10 participants 5 test sets per participant, 10 trials each test set, 1 task each
trial (thinking yes or no), 10 sec rest inbetween

[133] X fNIRS records 7 participants, 4 tasks per session, 3 sessions

[91] X fNIRS records 5 trials per task, 4 participants

[87] X fNIRS records 36 participants, 15, 10, 11 for 3 groups of lower extremity burn, upper
extremity burn, healthy, walking-related

[141] X fNIRS records 6 participants, 4 sessions each participant, cognitive tasks

[16] X leaf spectra 15 leaves per tree, 6 trees, per week

[6] X cereal spectra 80%/20% for train/test, 164 breakfast cereal samples, 1 g cereal was mixed
with 40 mL of 80% (v/v) ethano

[54] X blood glucose
spectra

45 samples from 5 participants, Glucose levels 70 - 140 mg/dL

[186] X corn leaf spectra 38 plant samples, with 19 of high N plants and 19 of low N plants

[101] X food spectra 3 samples for 8 foods, scanned at day x, 0 ≤ 𝑥 ≤ 30, x varies among samples

[80] X glucose and
bilirubin solution
spectra

In vitro: total number unspecified (22 glucose solutions with 0 - 800 mg/dL
concentrations, 15 bilirubin solutions with 2 - 30 ml/dL concentrations).
In vivo: 24 data points (19/5 data points for train/test, 24 participants)

[44] X fNIRS records 25 participants, 36 blocks in 3 tasks

[49] X hand vein images hand vein images from 20 participants

[13] X forage spectra 612 alfalfa, 516 grass samples, using 3 mobile NIRS and 1 benchtop NIRS

[76] X iron(II) and
phosphate solution
spectra

Modeling: total number unspecified (standard iron(II) and phosphate solu-
tions with 0 - 5 mg/L concentrations respectively)
Testing: 25 data points (5 data points per solution, 5 standard iron(II) and
phosphate solutions with 0.05, 0.1, 1, 2, 3 mg/L concentrations, respectively)

Continued on next page
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Appendix Table 5 – continued from previous page
Ref. Dataset Description

[129] X fNIRS records 19 participants, all right-handed, 8 blocks of working memory tasks per
participant

[123] X distance and
relative body
orientation
measurements

64 participants, with 16 teams of 4 participants, 4 task roles, 6 task timelines

X – total number unspecified.
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Appendix C CRITERIA FOR REGRESSION TASKS
We show the equations of different criteria for regression tasks below

Mean absolute error (MAE) 𝑀𝐴𝐸 =
∑𝑁

𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

Root mean square error (RMSE) 𝑅𝑀𝑆𝐸 =

√︃∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

Root relative squared error (RRSE) 𝑅𝑅𝑆𝐸 =

√︄∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦)2

Standard error of prediction (SEP) 𝑆𝐸𝑃 =

√︄∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

𝑁

Mean percentage error (MPE) 𝑀𝑃𝐸 =
100%
𝑁

∑𝑁
𝑖=1

𝑦𝑖 − 𝑦𝑖

𝑦𝑖

Mean squared error (MSE) 𝑀𝑆𝐸 =
∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

Coefficient of determination 𝑅2 = 1 −
∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

where 𝑦𝑖 , 𝑦𝑖 , and 𝑦 represent an estimated value, a ground-truth value, the mean of ground-truth
values respectively.
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Appendix D MOBILE NEAR-INFRARED SENSING REGRESSION TASKS
We provide a comprehensive list of regression tasks and corresponding machine learning models
for recent studies using mobile NIR technologies. We note that a paper can include multiple tasks.
For analysis, please refer to Section 6.2.

Appendix Table 6. Regression tasks using NIR methods in recent studies, sorted by tasks.

Ref. Task Model Datatype Performance

[125] Added water estimation SLR Spectra MAE<1%

[140] Alcohol concentration prediction MLP Spectra RMSE=2.84, RRSE=7.87%

[175] Baicailin concentraion prediction PLS Spectra 𝑅2 = 0.9920, 𝑆𝐸𝑃 = 87.7𝜇𝑔/𝑚𝐿

[80] Bilirubin concentration prediction SLR Spectra 𝑅2=0.272 for transmittance, 0.4336
for reflectance

[36] Biochemical variables prediction RoBoost-
PLS
regressor

Images 𝑅22 = 0.990, 0.848, 0.927, RMSE =
3.14, 10.20, 7.58 𝑔/𝐿, for Syrah, Fer,
Mauzac, respectively

[80] Blood glucose prediction SLR Spectra MPE=8.27%, RMSE=18.52 mg/dL

[116] Blood glucose prediction MLP Values MAE=5.855 mg/dL

[119] Breast milk content prediction PLS
regressor

Spectra 𝑅2 = 0.85, 0.67, 0.01 for fat, raw pro-
tein, carbohydrates, respectively

[155] Curcuminoid prediction PLS Spectra 𝑅2 = 0.797, RMSE=0.306

[82] Drink sucrose concentration
prediction

MLR Spectra 𝑅𝑀𝑆𝐸 ≤ 2.0𝑔/100𝑚𝑙

[140] Dye concentraion prediction MLP Spectra RMSE=4.29, RRSE=14%

[75] Food nutrient concentration
prediction

RF
regressor

Spectra RMSE = 1.87 𝑔/100𝑚𝑙

[24] Fructose / glucose / sucrose
concentration prediction

PLS-OPS
regressor

Spectra RMSE = 15.90, 1.18, 1.65𝑚𝑔/𝑚𝑙 us-
ing DSJ, RMSE = 23.23, 1.40, 2.08
𝑚𝑔/𝑚𝑙 using LSJ, for sucrose, glu-
cose, fructose, respectively.

[82] Glucose and fructose
concentration prediction

MLR Spectra 𝑅𝑀𝑆𝐸 ≤ 2.29𝑔/100𝑚𝑙

[79] Glucose concentration prediction DT Spectra 𝑅2=0.96, MSE=0.021

[80] Glucose concentration prediction SLR Spectra 𝑅2=0.5214 for transmittance,
0.5449 for reflectance

[185] Inter-subject blood glucose
prediction

ELM-
TrAdaBoost

Spectra RMSE=0.137, 𝑅2=0.9660

[76] Iron(ii) concentration prediction SLR Spectra Mean % Bias=0.93%, Mean %
R.S.D.=3.44%

[82] Liquid dilution percentage
prediction

MLR Spectra 𝑅𝑀𝑆𝐸 = 2.09, 0.50, 1.19 for diluted
liquor, milk, perfume, respectively

Continued on next page
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Appendix Table 6 – continued from previous page

Ref. Task Model Datatype Performance

[56] Live and dead tissue estimation MLP Spectra 𝑅2=0.77, MSE=106.25

[169] Maturity level prediction PLS Spectra 𝑅2 = 0.83, RMSE=1.52, 5-fold

[178] Milk total solids estimation PLS Spectra RMSE=0.27% and 0.21% for raw
and homogenized milk respec-
tively

[67] Nitrogen content prediction RQGPR Spectra 𝑅2=0.7396, RMSE=1.13, MAE=0.72

[5] Nitrogen prediction RF
regressor

Spectra 𝑅2 = 0.661, RMSE = 0.022

[170] Nutrition content prediction PLS Spectra RMSE=0.0952, 0.0771, 0.0373 mg/g
for Chl-a, Chl-b, Car, respectively

[142] Nutritive parameters prediction PLS Spectra 𝑅2=0.516, 0.742, 0.704 for crude
protein, acid detergent fibre, neu-
tral detergent fibre, respectively

[153] Phenolic compounds prediction PLS
regressor

Spectra 𝑅2
𝐶𝑉

> 0.89 for all phenolic com-
pounds

[76] Phosphate concentration
prediction

SLR Spectra Mean % Bias=0.73%, Mean %
R.S.D.=1.25%

[5] Phosphor prediction RF
regressor

Spectra 𝑅2 = 0.705, RMSE = 9.250

[38] Plasticiser design points
prediction

PLS Spectra no metric computed

[5] Potassium prediction Gradient-
Boost
regressor

Spectra 𝑅2 = 0.774, RMSE = 6.711

[139] Predicting moisture content in c.
oleifera seeds

PLS
regressor

Spectra 𝑅2 = 0.927, SEP = 0.848%db with
backward interval wavelength se-
lection

[8] Predicting rice adulteration level MLP
regressor

Spectra 𝑅2 >= 0.95

[7] Protein quality prediction PLS Spectra 𝑅2 ≥ 0.92, RMSE≤ 3.07%

[118] Pupil center estimation MLP Images pixel error=1.2

[118] Pupil size estimation MLP Images pixel error=0.85

[46] Soil nitrogen prediction PLS Spectra 𝑅2 = 0.934, RMSE=1.923, relative
error< 13% for in situ test

[191] Soil nitrogen prediction SVM Spectra RMSE=0.0193 g/kg

[6] Sugar content prediction PLS Spectra 𝑅2 ≥ 0.93, SEP≤2.4 g/100 g

[127] Sugarcane quality prediction PLS Spectra 𝑅2=0.86, 0.84, 0.80, 0.88, 0.81,
RMSE=0.84, 0.83, 0.87, 1.22, 1.60,
for FS, CJ, RJ, SCS, SS, respectively

Continued on next page

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2024.



2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Mobile Near-Infrared Sensing – A Systematic Review 1:15

Appendix Table 6 – continued from previous page

Ref. Task Model Datatype Performance

[171] Tea polyphenols concentration
prediction

SLR Values 𝑅2 = 0.99948

[62] Tobacoo chemical composition
prediction

PLS Spectra 𝑅2=0.96, 0.91, 0.92, 0.90,
𝑅𝑀𝑆𝐸 =1.29, 1.35, 0.08, 0.14,
for total sugar, reducing sugar, to-
tal nitrogen, nicotine, respectively

[67] Water content prediction RQGPR Spectra 𝑅2=0.4608, RMSE=3.97, MAE=2.75
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Appendix E MOBILE NEAR-INFRARED SENSING CLASSIFICATION TASKS
We provide a comprehensive list of classification tasks and corresponding machine learning models
for recent studies using mobile NIR technologies. For analysis, please refer to Section 6.3.

Appendix Table 7. Classification tasks using NIR methods in recent studies, sorted by tasks.

Ref. Task Model Datatype Performance

[157] Affirmative-negative brain
activity discrimination

MLP fNIRS
records

accuracy = 0.7

[101] Aging day recognition J48 Spectra accuracy > 0.887

[101] Bacteria level recognition J48 Spectra accuracy = 0.973, 0.966, 0.760 for
beef, pork, bass, respectively

[98] Bottle recognition SVM Spectra accuracy = 0.656

[26] Brain activity classification BNN Spectra accuracy = 0.8314, 0.8047 for with
and without proposed technique
repsectively

[115] Breathing condition classification RF fNIRS
records

accuracy = 0.87, F1-score = 0.86

[44] Cogeo and noneo classification SVM fNIRS
records

accuracy = 0.77

[162] Cognitive fatigue detection RF fNIRS
records

accuracy = 0.7091, F-score = 0.7027

[130] Daily-living action recognition SVM fNIRS
records

accuracy = 0.7

[136] Diseased plant recognition XY-F Spectra accuracy = 0.9516

[39] Dorsal and palmar recognition MC Images EER=7.52

[82] Drink recognition kNN /
SVM / RF

Spectra accuracy = 1.0 for all

[66] Drowsy state classification SVM fNIRS
records

accuracy = 0.659

[98] Ethanol solution recognition HESCA /
PLS

Spectra accuracy = 0.965 for both

[124] Food freshness recognition CNN Spectra accuracy = 0.85 for salmon, 0.88 for
tuna, 0.92 for beef

[182] Food powder recognition CNN Spectra accuracy = 1.0

[183] Food powder recognition SVM Spectra accuracy = 1.0

[184] Food powder recognition SVM Spectra accuracy = 1.0

[153] Genetically modified crops
classification

SVM Spectra accuracy = 1.0

[64] Gesture recognition LDA fNIRS
records

accuracy> 95%

Continued on next page
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Appendix Table 7 – continued from previous page

Ref. Task Model Datatype Performance

[83] Gluten-free wrap recognition SVM Spectra accuracy = 0.858

[135] Hand identification DT Images accuracy = 0.9444

[72] Iris segmentation and recognition CNN Images EER=7.41%, 𝑂𝑃0.01 = 50.02%,
ME=0

[92] Mango maturity index
classification

PLS Spectra accuracy = 0.957

[169] Maturity level classification SVM Spectra accuracy = 0.83, F1=0.89, 10-fold

[98] Methanol solution recognition SVM Spectra accuracy = 0.864

[140] Milk solution recognition MLP Spectra F-score=0.785

[93] Pill recognition NB Spectra accuracy = 1.0, with 10-fold cross
valiation

[28] Pill recognition SVM Spectra accuracy = 0.8889

[93] Pill recognition scanned by
non-experts

RF Spectra accuracy = 0.9625

[1] Ripe apple recognition DT Spectra accuracy = 0.671

[148] Root-knot nematode infection
detection

NB Spectra accuracy = 0.82

[123] Task role recognition RF Values accuracy = 0.849

[123] Task timeline recognition RF Values accuracy = 0.932

[91] Task-rest brain status recognition SVM fNIRS
records

accuracy = 0.7

[101] Thiobarbituric acid (tba)
recognition

J48 Spectra accuracy = 0.993, 0.967, 0.947 for
beef, pork, bass, respectively

[58] Vein biometric recognition PIS-CVBR Images EER=14.76%, 17.03%, for Poco-
phone F1, Mi 8, respectively

[101] Volatile basic nitrogen (vbn)
recognition

J48 Spectra accuracy = 0.980, 0.973, 0.893 for
beef, pork, bass, respectively

[10] Watermelon ripeness
classification

KNN Spectra accuracy = 0.907
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Appendix F MOBILE NEAR-INFRARED APPLICATIONS
We provide a comprehensive list of applications for recent studies using mobile NIR technologies.
For application analysis, please refer to Section 7.1.

Appendix Table 8. Applications using NIR technologies in recent studies, sorted by application area.

Ref. Area Use case NIR technology

[92] Agriculture Classifying mango maturity index NIRS

[136] Agriculture Detecting plant infection VIS-NIRS

[191] Agriculture Estimating soil nitrogen and moisture NIRS

[46] Agriculture Estimating soil nitrogen NIRS

[1] Agriculture Estimating fruit quality NIRS

[56] Agriculture Assessing berry cell vitality NIRS

[169] Agriculture Estimating fruit maturity levels NIRS

[24] Agriculture Estimating sugar concentration of sugarcane juice NIRS

[127] Agriculture Estimating sugarcane quality VIS-NIRS

[148] Agriculture Detecting crop disease NIRS

[171] Agriculture Detecting tea polyphenol for quality control NIR sensing

[153] Agriculture Analyzing genetically modified crops NIRS

[164] Agriculture Estimating leaf chlorophyll density VIS-NIRS

[36] Agriculture Predicting biochemical variables of grape berries NIR imaging

[62] Agriculture Detecting tobacoo chemical composition NIRS

[52] Agriculture Assessing thermal defoliation of cottons VIS-NIRS

[13] Agriculture Analyzing dairy farm forage quality NIRS

[10] Agriculture Estimating watermelon ripeness NIRS

[170] Agriculture Onsite nutritional diagnosis of tea plants NIRS

[67] Agriculture Estimating left nitrogen and water contents in crops NIRS

[139] Agriculture Predicting moisture content in C. oleifera seeds NIRS

[144] Agriculture Identifying weed in rice farming VIS-NIRS

Continued on next page
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Appendix Table 8 – continued from previous page

Ref. Area Use case NIR tech

[5] Agriculture Predicting soil contents of nitrogen, phosphor, and
potassium NIRS

[186] Agriculture Analyzing corn leaves NIRS

[7] Agriculture Screening soybean quality NIRS (FT-NIR)

[142] Agriculture Analyzing dairy farm forage quality NIRS

[31] Agriculture Analyzing dairy farm forage quality NIRS

[16] Agriculture Analyzing citrus plant leaves as proximal sensors for
remote sensing VIS-NIRS

[51] Agriculture Analyzing dairy farm forage quality NIRS

[86] Environmental Analyzing microalgae in freshwater VIS-NIRs

[3] Environmental Analyzing glyphosate residues in waters NIRS

[60] Environmental Estimating snow optically equivalent diameter (OED) NIR sensing

[147] Environmental Analyzing macrophyte species as proximal sensors for
remote sensing VIS-NIRS

[71] Environmental Localizing bats NIR imaging

[99] Environmental Monitoring heavy metals in water as proximal sensors
for remote sensing VIS-NIRS

[8] Food computing Predicting rice adulteration levels as fraudulent prod-
ucts NIRS

[83] Food computing Detecting gluten in bread NIRS

[82] Food computing Estimating content concentration and identifying ev-
eryday drinks NIRS

[184] Food computing Classifying food powders VIS-NIRS

[119] Food computing Analyzing breast milk contents NIRS

[75] Food computing Analyzing food nutrients NIRS

[178] Food computing Detecting milk composition VIS-NIRS

[6] Food computing Monitoring sugar content in breakfast cereals NIRS (FT-NIR)

Continued on next page
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Appendix Table 8 – continued from previous page

Ref. Area Use case NIR tech

[124] Food computing Estimating freshness of salmon, tuna and beef VIS-NIRS

[155] Food computing Estimating curcuminoids in turmeric powder NIRS

[183] Food computing Classifying food powders VIS-NIRS

[98] Food computing Detecting counterfeit alcohols UV-VIS-NIRS

[140] Food computing Analyzing liquid food Photoacoustic

[182] Food computing Classifying food powders VIS-NIRS

[125] Food computing Detecting milk adulterations NIRS

[76] Food computing Analyzing liquid contents NIRS

[101] Food computing Estimating freshness of meat, fish, vegetable and fruits NIRS

[126] Food computing Estimating fat in food NIRS

[123] HCI Measuring interaction proxemics in social activities NIR sensing

[165] HCI Brain-machine interface fNIRS (EEG-fNIRS)

[150] HCI Analyzing brain activities during driving in winter fNIRS

[177] HCI Estimating cybersickness in VR based on brain activity
monitoring fNIRS

[180] HCI Monitoring muscle activity for gesture recognition fNIRS

[43] HCI Embedding interactive tags into 3D prints NIR imaging

[156] HCI Analyzing brain activities before and after take-over
request in automated driving fNIRS

[89] HCI Monitoring hemodynamic response in brain during
basketball dribbling fNIRS

[64] HCI Monitoring muscle activity for gesture recognition fNIRS (sEMG+fNIRS)

[167] HCI Detecting pupil and glint NIR imaging

[157] HCI Brain-machine interface fNIRS

[174] HCI Gesture recognition NIR imaging

[118] HCI Eye-tracking NIR imaging

Continued on next page
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Appendix Table 8 – continued from previous page

Ref. Area Use case NIR tech

[77] HCI Controlling home appliances NIR communications

[91] HCI Brain-machine interface fNIRS

[130] HCI Brain-machine interface fNIRS

[106] HCI Eye-tracking NIR imaging

[68] HCI Brain imaging for action analysis fNIRS

[26] Healthcare Brain imaging for action analysis fNIRS

[152] Healthcare Monitoring hemodynamic response in brain fNIRS

[115] Healthcare Classifying breathing conditions (baseline, loaded,
rapid) fNIRS

[189] Healthcare Investigating memory-related prefrontal cortex activity
in elderly with diabetes fNIRS

[49] Healthcare Imaging dorsal hand veins with different skin tones NIR imaging

[151] Healthcare Monitoring oxygenation in brain (cerebral oximetry) fNIRS

[81] Healthcare Monitoring glucose in blood NIR sensing

[55] Healthcare Monitoring blood oxygen and heart rate NIR sensing (PPG)

[88] Healthcare Photo therapy for hyper-pigmentation NIR radiation

[176] Healthcare Analyzing falsified drugs NIRS

[107] Healthcare Detecting muscle fatigue fNIRS

[122] Healthcare Detecting bladder filling to capacity NIR sensing

[97] Healthcare Monitoring glucose in blood NIR sensing

[34] Healthcare Vein imaging for intravenous access NIR imaging

[100] Healthcare Monitoring hemodynamic response in brain fNIRS

[33] Healthcare Monitoring glucose and insulin in blood NIRS

[23] Healthcare Monitoring blood oxygen and heart rate NIRS

[80] Healthcare Monitoring glucose and bilirubin in blood NIRS

Continued on next page
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Appendix Table 8 – continued from previous page

Ref. Area Use case NIR tech

[79] Healthcare Estimating glucose in blood based on saliva samples NIRS

[181] Healthcare Brain imaging fNIRS

[129] Healthcare Monitoring prefrontal activity for daily use fNIRS

[93] Healthcare Identifying pharmaceuticals NIRS

[28] Healthcare Identifying pharmaceuticals NIRS

[12] Healthcare Assessing sleep apnea NIRS

[185] Healthcare Monitoring glucose in blood NIRS

[30] Healthcare Detecting breast tumor NIR imaging

[146] Healthcare Monitoring hemodynamic response in brain fNIRS

[188] Healthcare Monitoring oxygenation in brain (cerebral oximetry) fNIRS

[111] Healthcare Estimating blood pressure NIR sensing (PPG)

[21] Healthcare Monitoring glucose in blood NIR sensing

[47] Healthcare Detecting extravasation during injection NIRS

[2] Healthcare Monitoring hemodynamic response in brain fNIRS

[175] Healthcare Identifying pharmaceuticals NIRS (AOTF-NIR)

[37] Healthcare Monitoring blood oxygen and heart rate NIRS

[172] Healthcare Monitoring hemodynamic response in brain fNIRS

[116] Healthcare Monitoring glucose and bilirubin in blood NIR sensing (PPG)

[54] Healthcare Monitoring glucose in blood NIRS (BIS-NIRS)

[57] Healthcare Intraoperative guidance for surgery NIR fluorescence
imaging

[50] Healthcare Diagnosing breast cancer NIRS

[145] Healthcare Brain imaging fNIRS

[20] Healthcare Monitoring hemodynamic response in brain for pig-
mented subjects fNIRS

[131] Healthcare Intraoperative preservation of parathyroid glands NIR imaging

Continued on next page
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Appendix Table 8 – continued from previous page

Ref. Area Use case NIR tech

[87] Healthcare Investigating cortical brain activity during usual walk-
ing in patients with neurological injury fNIRS

[17] Healthcare Monitoring hemoglobin and water concentration de-
tection in human body fNIRS

[149] Healthcare Monitoring regional hemoglobin oxygen fNIRS

[161] Healthcare Monitoring glucose in blood NIRS

[4] Healthcare Detecting colorectal cancer cells NIR fluorescence
imaging

[44] Psychology Onset classification for working memory tasks fNIRS

[166] Psychology Analyzing brain’s microstates during surgical tasks fNIRS

[141] Psychology Monitoring hemodynamic response in brain during
cognitive tasks fNIRS

[66] Psychology Monitoring drowsiness fNIRS+EEG

[162] Psychology Detecting cognitive fatigue fNIRS

[128] Psychology Estimating index of fatigue fNIRS

[117] Psychology Measuring anxiety index fNIRS

[108] Psychology Monitoring hemodynamic response in brain during
sleep in relation to stress fNIRS

[133] Psychology Estimating cognitive performance fNIRS

[69] Security Multi-band photographing for security and surveillance RGB-NIR imaging

[58] Security Imaging veins for biometric recognition NIR imaging

[135] Security User identification using hand geometrical features NIR imaging

[72] Security Recognizing iris NIR imaging

[39] Security Imaging vascular pattern of hand-veins for biometric
recognition NIR imaging

[103] Security Labelling objects invisibly for privacy protection NIR imaging

[65] Security Detecting relay attacks NIR sensing (commu-
nication)

Continued on next page
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Appendix Table 8 – continued from previous page

Ref. Area Use case NIR tech

[38] Other Analyzing solid rocket propellant chemical and struc-
tural health status NIRS

[59] Other N/A (a design for mobile NIRS prototype) NIRS

[32] Other Monitoring vocal fold vibration NIR sensing (Pho-
toglottography)

[102] Other Analyzing transformer oil inhibitor contents NIRS

[158] Other Analyzing conservation and restoration of paper-based
artifacts NIR imaging

[173] Other Underdrawing identification for large paintings NIR imaging
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